Skip to main content
Log in

Highly sensitive room-temperture NO2 gas sensor based on Bi2S3 nanorods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth sulfide (Bi2S3) is known for its remarkable sensitivity and stability, making it as an ideal material for gas sensor. Here, we present a highly sensitive room-temperature NO2 gas sensor by controlling the Bi2S3 nanorods morphology through hot injection method with varying Bi/S ratios (Bi/S = 1, Bi/S = 2, Bi/S = 4). The as-synthesized samples were subsequently spin-coated onto ceramic substrates to fabricate chemo-resistive gas sensors. TEM and XPS analyses revealed that with the increasing Bi/S ratio in the precursors leading to the nanorods aspect ratios enhancing and the generation of S vacancies facilitating. As a result, Bi2S3 nanorods with a Bi/S ratio of 4 exhibited higher carrier mobility and provided more accessible sites for gas molecules. The optimal sensor (Bi/S = 4) showed an impressive response of 12.2 for 10 ppm NO2, which is 4 times higher than the device of Bi/S = 1. It also demonstrated a fast response/recovery time of 39 s/696 s and a lower detection limit down to 120 ppb. These findings highlight the excellent gas sensitivity performance of Bi2S3 nanorods at room temperature and their potential for the development of energy-efficient and cost-effective gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The original data during the current study are available from the corresponding author at a reasonable request.

References

  1. Q. Li, W. Zeng, Y. Li, Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: recent developments. Sens. Actuators B Chem. 359, 131579 (2022)

    Article  CAS  Google Scholar 

  2. R. Sakthivel, A. Geetha, J. Dineshkumar, Design and fabrication of CoS2/graphene hybrid composite film sensor for NO2 gas-sensing performance. J. Mater. Sci. Mater. Electron. 34(19), 1495 (2023)

    Article  CAS  Google Scholar 

  3. N.T. Hang, N.H. Hieu, L.T. Nhiem, Sensitive NO2 sensor based on silver nanowires-decorated monolayer graphene with assistance of UV illumination. J. Mater. Sci. Mater. Electron. 34(2), 90 (2023)

    Article  CAS  Google Scholar 

  4. P. Cao, R. Chen, Y. Cai, D. Pawar, C.N. Rao, S. Han, W. Xu, M. Fang, X. Liu, Y. Zeng, W. Liu, D. Zhu, Y. Lu, Ultra-high sensitive and ultra-low NO2 detection at low-temperature based on ultrathin In2O3 nanosheets. J. Mater. Sci. Mater. Electron. 32(14), 19487–19498 (2021)

    Article  CAS  Google Scholar 

  5. I.S. Saggu, K. Singh, Z. Chen, M.T. Xuan, S. Swihart, Ultrasensitive room-temperature NO2 detection using SnS2/MWCNT composites and accelerated recovery kinetics by UV activation. ACS Sens. 8, 243–253 (2023)

    Article  CAS  PubMed  Google Scholar 

  6. X. Ren, Z. Zhang, Z. Tang, ZIF-derived nanoparticles modified ZnO nanorods hierarchical structure for conductometric NO2 gas sensor. J. Mater. Sci. Mater. Electron. 34(2), 648 (2023)

    Article  CAS  Google Scholar 

  7. M. Sun, M. Wang, C. Ge, J. Huang, Y. Li, P. Yan, M. Wang, S. Lei, L. Bai, G. Qiao, Au-doped ZnO@ZIF-7 core-shell nanorod arrays for highly sensitive and selective NO2 detection. Sens. Actuators B Chem. 384, 133632 (2023)

    Article  CAS  Google Scholar 

  8. M. Inaba, T. Oda, M. Kono, N. Phansiri, T. Morita, S. Nakahara, M. Nakano, J. Suehiro, Effect of mixing ratio on NO2 gas sensor response with SnO2-decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly. Sens. Actuators B Chem. 344, 130257 (2021)

    Article  CAS  Google Scholar 

  9. T. Ueda, I. Boehme, T. Hyodo, Y. Shimizu, U. Weimar, N. Barsan, Effects of gas adsorption properties of an Au-loaded porous In2O3 sensor on NO2-sensing properties. ACS Sens. 6, 4019–4028 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. M.F. Fellah, The reduced graphene oxide/WO3: sensing properties for NO2 gas detection at room temperature. Diam. Relat. Mater. 119, 108593 (2021)

    Article  ADS  CAS  Google Scholar 

  11. Y. Hu, T. Li, J. Zhang, J. Guo, W. Wang, D. Zhang, High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. Actuators B Chem. 352, 130912 (2022)

    Article  CAS  Google Scholar 

  12. M. Li, B. Zhang, L. Yang, C. Lan, J. Luo, C. Fu, R. Tao, J. Luo, Sensitive and stable NO2 gas sensors employing halogen-passivated colloidal quantum dots. IEEE Sens. J. 23, 13891–13899 (2023)

    Article  ADS  CAS  Google Scholar 

  13. M. Li, H. Kan, J. Liu, Z. Hu, H. Liu, Grain size-engineering of PbS colloidal quantum dots-based NO2 gas sensor. IEEE Sens. J. 22, 3017–3023 (2022)

    Article  ADS  CAS  Google Scholar 

  14. J. Hu, J. Zhang, X. Liu, H. Zhang, X.-X. Xue, Y. Zhang, Highly selective NO2 sensor based on Au/SnS2 nano-heterostructures via visible-light modulation. Appl. Surf. Sci. 623, 157093 (2023)

    Article  CAS  Google Scholar 

  15. M.F. Afsar, M.A. Rafiq, A.I.Y. Tok, Two-dimensional SnS nanoflakes: synthesis and application to acetone and alcohol sensors. RSC Adv. 7, 21556–21566 (2017)

    Article  ADS  CAS  Google Scholar 

  16. Q. Feng, X. Xie, M. Zhang, N. Liao, First-principles investigation of Bi2S3 as sensitive and selective NO2 sensor upon humidity exposure. J. Mater. Sci. 58, 2198–2208 (2023)

    Article  ADS  CAS  Google Scholar 

  17. J. Luo, X. Feng, H. Kan, H. Li, C. Fu, One-dimensional Bi2S3 nanobelts-based surface acoustic wave sensor for NO2 detection at room temperature. IEEE Sens. J. 21, 1404–1408 (2021)

    Article  ADS  CAS  Google Scholar 

  18. X. Zhao, M. Zhi, D. Hang, Q. Ren, P. Zhang, C. Chen, Q. Chen, Q. Li, Z. Zhang, J. Yan, X. Ma, C. Zhai, W. Zhao, Ultrasensitive NO2 gas sensor based on MoS2 modified urchin-like Bi2S3 heterojunction. E Low Dimens. Syst. Nanostruct. 147, 115574 (2023)

    Google Scholar 

  19. M. Ikram, L. Liu, H. Lv, Y. Liu, A.U. Rehman, K. Kan, W. Zhang, L. He, Y. Wang, R. Wang, K. Shi, Intercalation of Bi2O3/Bi2S3 nanoparticles into highly expanded MoS2 nanosheets for greatly enhanced gas sensing performance at room temperature. J. Hazard. Mater. 363, 335–345 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Qin, Z. Wei, Y. Bai, Effect of vacancy defects of SnS on gas adsorption and its potential for selective gas detection. Vacuum. 183, 109792 (2021)

    Article  ADS  CAS  Google Scholar 

  21. X. Chen, J. Shi, T. Wang, S. Zheng, W. Lv, J. Yang, M. Zeng, N. Hu, Y. Su, Z. Yang, Z.-H. Zhou, High-performance wearable sensor inspired by the Neuron conduction mechanism through gold-induced sulfur vacancies. ACS Sens. 7, 816–826 (2022)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Yang, T. Xin, C. Liu, T. Zhang, W. Hao, Y. Wang, J. Hao, Urchin-like Bi2S3 nanostructures with rich sulfur vacancies for ppb-level NO2 sensing. J. Alloys Compd. 930, 167467 (2023)

    Article  CAS  Google Scholar 

  23. Y. Yang, J. Mao, D. Yin, T. Zhang, C. Liu, W. Hao, Y. Wang, J. Hao, Synergy of S-vacancy and heterostructure in BiOCl/Bi2S3–x boosting room-temperature NO2 sensing. J. Hazard. Mater. 455, 131591 (2023)

    Article  CAS  PubMed  Google Scholar 

  24. P. Han, A. Mihi, J. Ferré-Borrull, J. Pallarès, L.F. Marsal, Interplay between morphology, optical properties, and electronic structure of solution-processed Bi2S3 colloidal nanocrystals. J. Phys. Chem. C 119, 10693–10699 (2015)

    Article  CAS  Google Scholar 

  25. M. Ahmadipour, M. Arjmand, M.F. Ain, Z.A. Ahmad, S. Pung, Effect of WO3 loading on structural, electrical and dielectric properties of CaCu3Ti4O12 ceramic composites. J. Mater. Sci. Mater. Electron. 30, 6806–6810 (2019)

    Article  CAS  Google Scholar 

  26. H. Kan, W. Zheng, C. Fu, R. Lin, J. Luo, F. Huang, Ultrawide band gap oxide nanodots (Eg > 4.8 eV) for a high-performance deep ultraviolet photovoltaic detector. ACS Appl. Mater. Interfaces. 12, 6030–6036 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. H. Kan, M. Li, Z. Song, S. Liu, B. Zhang, J. Liu, M.-Y. Li, G. Zhang, S. Jiang, H. Liu, Highly sensitive response of solution-processed bismuth sulfide nanobelts for room-temperature nitrogen dioxide detection. J. Colloid Interface Sci. 506, 102–110 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. H. Yu, Z. Song, Q. Liu, X. Ji, J. Liu, S. Xu, H. Kan, B. Zhang, J. Liu, J. Jiang, L. Miao, H. Liu, Colloidal synthesis of tungsten oxide quantum dots for sensitive and selective H2S gas detection. Sens. Actuators B Chem. 248, 1029–1036 (2017)

    Article  CAS  Google Scholar 

  29. Y. Xu, J. Xie, Y. Zhang, F. Tian, C. Yang, W. Zheng, X. Liu, J. Zhang, N. Pinna, Edge-enriched WS2 nanosheets on carbon nanofibers boosts NO2 detection at room temperature. J. Hazard. Mater. 411, 125120 (2019)

    Article  Google Scholar 

  30. P. Bharathi, S. Harish, M. Shimomura, M. Krishna Mohan, J. Archana, M. Navaneethan, Ultrasensitive and reversible NO2 gas sensor based on SnS2/TiO2 heterostructures for room temperature applications. Chemosphere. 346, 140486 (2024)

    Article  CAS  PubMed  Google Scholar 

  31. X. Chen, T. Wang, J. Shi, W. Lv, Y. Han, M. Zeng, J. Yang, N. Hu, Y. Su, H. Wei, Z. Zhou, Z. Yang, Y. Zhang, A novel artificial neuronlike gas sensor constructed from CuS quantum Dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2022)

    Article  ADS  Google Scholar 

  32. Y. Wang, Y. Niu, R. Hao, J. Zhou, M. Guo, Y. Liu, W. Liu, Y. Chang, H. Li, Y. Wang, G. Zhou, Cauliflower-like copper zinc tin sulfur for ppb-level NO2 sensing at room temperature. Sens. Actuators B Chem. 393, 134212 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

Shandong Provincial Natural Science Foundation, China (No. ZR202112010027). National Natural Science Foundation of China (No. 62004100).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. The processing of data was performed by all authors. All authors discussed the results and approved the final manuscript.

Corresponding author

Correspondence to Min Li.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, H., Yang, W., Guo, Z. et al. Highly sensitive room-temperture NO2 gas sensor based on Bi2S3 nanorods. J Mater Sci: Mater Electron 35, 331 (2024). https://doi.org/10.1007/s10854-024-12133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12133-2

Navigation