Skip to main content
Log in

Enhanced anti-corrosion and microwave absorption properties of novel binary titanium niobium nitrides nanofiber

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the novel binary titanium niobium nitride nanofibers with dual functionalities of microwave absorption and corrosion resistance were synthesized. The results of XRD, XPS and EDS indicated that the as-prepared nanofibers was NbTiN2 phase with residual oxygen, which is favorable to the enhancement of impedance matching and interface polarization. Furthermore, the results of SEM and TEM demonstrated that the NbTiN2 nanofibers possess porous fibrous structure, resulting in the improvement of dipole polarization, interface polarization and multiple reflections. As a result, when the matching layer thickness was only 1.9 mm, the optimal reflection loss value reached − 44.97 dB, which was superior to the single-metal nitride nanofibers. Furthermore, the adulteration of Nb into TiN induces the generation of NbTiN2 solid solution and the TiNbN2 nanofibers exhibit stronger inertness characteristics, smallest corrosion current, highest corrosion voltage, indicating that it possesses excellent corrosion resistance. Consequently, the dual-function of microwave absorbing and corrosion resistance could be regulated simultaneously via adulteration of Nb into TiN to form the novel binary titanium niobium nitride nanofiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Z.K. Xu, J.T. Li, J.Z. Li, J.N. Du, T. Li, W.G. Zeng, J.H. Qiu, F. Meng, Bionic structures for optimizing the design of stealth materials. Phys. Chem. Chem. Phys. 25, 5913–5925 (2023). https://doi.org/10.1039/D2CP06086H

    Article  CAS  PubMed  Google Scholar 

  2. W. Li, Z.J. Yu, Q.B. Wen, Y. Feng, B.B. Fan, R. Zhang, R. Riedel, Ceramic-based electromagnetic wave absorbing materials and concepts towards lightweight, flexibility and thermal resistance. Int. Mater. Rev. 68, 1–33 (2023). https://doi.org/10.1080/09506608.2022.2077028

    Article  CAS  Google Scholar 

  3. X.Z. Zhang, Y. Guo, R. Ali, W. Tian, Y.F. Liu, L. Zhang, X. Wang, L.B. Zhang, L.J. Yin, H. Su, Y.X. Li, L.J. Deng, X. Jian, Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance. J. Alloys Compd. 828, 154079 (2020). https://doi.org/10.1016/j.jallcom.2020.154079

    Article  CAS  Google Scholar 

  4. J. Liu, X.F. Wei, L.L. Gao, J.Q. Tao, L.L. Xu, G.Y. Peng, H.S. Jin, Y.C. Wang, Z.J. Yao, J.T. Zhou, An overview of C-SiC microwave absorption composites serving in harsh environments. J. Eur. Ceram. Soc. 43, 1237–1254 (2023). https://doi.org/10.1016/j.jeurceramsoc.2022.11.040

    Article  CAS  Google Scholar 

  5. J.W. Ge, Y. Cui, L. Liu, F.D. Meng, F.H. Wang, The hollow Fe2O3/RGO microwave absorbent toward marine environment. Mater. Lett. 315, 131852 (2022). https://doi.org/10.1016/j.matlet.2022.131852

    Article  CAS  Google Scholar 

  6. M.Y. Han, M. Zhou, Y. Wu, Y. Zhao, J.M. Cao, S.L. Tang, Z.Q. Zou, G.B. Jia, Constructing angular conical FeSiAl/SiO2 composites with corrosion resistance for ultra-broadband microwave absorption. J. Alloys Compd. 902, 163792 (2022). https://doi.org/10.1016/j.jallcom.2022.163792

    Article  CAS  Google Scholar 

  7. C.C. Ma, W. Wang, Q. Wang, N. Sun, S.Q. Hu, S. Wei, H.M. Feng, X.P. Hao, W. li, D.B. Kong, S.H. Wang, S.G. Chen, Facile synthesis of BTA@NiCo2O4 hollow structure for excellent microwave absorption and anticorrosion performance. J. Colloid Interf Sci. 594, 604–620 (2021). https://doi.org/10.1016/j.jcis.2021.03.048

    Article  ADS  CAS  Google Scholar 

  8. H.B. Liu, J.J. Huang, B.Z. Guo, Light weight, flexible and ultrathin PTFE@Ag and Ni@PVDF composite film for high-efficient electromagnetic interference shielding. Materials. 16, 4831 (2023). https://doi.org/10.3390/ma16134831

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y.J. Liu, Q.Q. Lu, J. Wang, X.M. Zhao, A flexible sandwich structure carbon fiber cloth with resin coating composite improves electromagnetic wave absorption performance at low frequency. Polymers. 14, 233 (2022). https://doi.org/10.3390/polym14020233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. Zhu, Y. Cui, D.F. Lv, K.Z. Xu, Y.J. Chen, Y.N. Wei, H.Y. Wei, J.L. Bu, Synthesis of setaria viridis-like TiN fibers for efficient broadband electromagnetic wave absorption in the whole X and Ku bands. Appl. Surf. Sci. 533, 147439 (2020). https://doi.org/10.1016/j.apsusc.2020.147439

    Article  CAS  Google Scholar 

  11. Y.P. Shi, D. Li, H.X. Si, Z.Y. Jiang, M.Y. Li, C.H. Gong, TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 130, 249–255 (2022). https://doi.org/10.1016/j.jmst.2022.04.050

    Article  CAS  Google Scholar 

  12. Y. Cui, C.J. Li, R.K. Li, Y.N. Wei, D.F. Lv, J.L. Bu, H.Y. Wei, B. Liang, Effect of synthesis temperatures on the composition, microstructure, and microwave absorption properties of titanium nitride porous nanofibers prepared using ammonia reduction nitridation process. J. Mater. Sci: Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-10471-1

    Article  Google Scholar 

  13. C.P. Li, D. Li, L. Zhang, Y.H. Zhang, L. Zhang, C.H. Gong, J.W. Zhang, Boosted microwave absorption performance of transition metal doped TiN fibers at elevated temperature. Nano Res. 16, 3570–3579 (2023). https://doi.org/10.1007/s12274-023-5398-3

    Article  ADS  CAS  Google Scholar 

  14. C.P. Li, L. Zhang, S. Zhang, Q.Q. Yu, D. Li, L. Zhang, C.H. Gong, J.W. Zhang, Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum. Nano Res. (2023). https://doi.org/10.1007/s12274-023-6350-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Z.Y. Jiang, Y.J. Gao, Z.H. Pan, M.M. Zhang, J.H. Guo, J.W. Zhang, C.H. Gong, Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 174, 195–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.013

    Article  Google Scholar 

  16. Y. Cui, K.Z. Xu, B. Zhu, S.L. Hu, Y.J. Chen, D.F. Lv, Y. Yu, J.L. Bu, H.Y. Wei, B. Liang, Synthesis of niobium nitride porous nanofibers with excellent microwave absorption properties via reduction nitridation of electrospinning precursor nanofibers with ammonia gas. J. Alloy Comp. 907, 164453 (2022). https://doi.org/10.1016/j.jallcom.2022.164453

    Article  CAS  Google Scholar 

  17. R.K. Li, F. Zhang, C.J. Li, Y. Cui, J.J. Wen, D.F. Lv, Y.J. Chen, Y.N. Wei, H.Y. Wei, J.L. Bu, Synthesis of daisy-like vanadium nitride powders with excellent microwave absorption properties. J. Mater. Sci: Mater. Electron. 34, 293 (2023). https://doi.org/10.1007/s10854-022-09727-z

    Article  CAS  Google Scholar 

  18. R.K. Li, C.J. Li, F. Zhang, Y. Cui, D.F. Lv, Y.J. Chen, Y.N. Wei, H.Y. Wei, J.L. Bu, Synthesis and microwave absorption properties of porous vanadium nitride microspheres. J. Mater. Sci: Mater. Electron. 33, 17306–17321 (2022). https://doi.org/10.1007/s10854-022-08608-9

    Article  CAS  Google Scholar 

  19. J.Q. Lu, R.K. Li, Y. Cui, R.L. Wang, D.F. Lv, Y.N. Wei, Y.J. Chen, H.Y. Wei, J.L. Bu, Synthesis and microwave absorption properties of zirconium nitride nanofibers by electrospinning combined with carbon thermal reduction nitriding method. J. Mater. Sci: Mater. Electron. 34, 2586 (2023). https://doi.org/10.1007/s10854-023-11004-6

    Article  CAS  Google Scholar 

  20. B.B. Wei, F.W. Ming, H.F. Liang, Z.B. Qi, W.S. Hu, Z.C. Wang, All nitride asymmetric supercapacitors of niobium titanium nitride-vanadium nitride. J. Power Sources. 481, 228842 (2021). https://doi.org/10.1016/j.jpowsour.2020.228842

    Article  CAS  Google Scholar 

  21. Y.L. Xu, J. Wang, B. Ding, L.F. Shen, H. Dou, X.G. Zhang, General strategy to fabricate ternary metal nitride/carbon nanofibers for supercapacitors. Chem. Electro Chem. 2, 2020–2026 (2015). https://doi.org/10.1002/celc.201500310

    Article  CAS  Google Scholar 

  22. Z.M. Cui, R.G. Burns, F.J. DiSalvo, Mesoporous Ti0.5Nb0.5N ternary nitride as a novel noncarbon support for oxygen reduction reaction in acid and alkaline electrolytes. Chem. Mater. 25, 3782–3784 (2013). https://doi.org/10.1021/cm4027545

    Article  CAS  Google Scholar 

  23. J.J. Brancho, A.D. Proctor, S. Panuganti, B.M. Bartlett, Urea-glass preparation of titanium niobium nitrides and subsequent oxidation to photoactive titanium niobium oxynitrides. Dalton Trans. 46, 12081–12087 (2017). https://doi.org/10.1039/c7dt03077k

    Article  CAS  PubMed  Google Scholar 

  24. C.Q. Shang, G.R. Li, B.B. Wei, J.Y. Wang, R. Gao, Y. Tian, Q. Chen, Y.G. Zhang, L.L. Shui, G.F. Zhou, Y.F. Hu, Z.W. Chen, X. Wang, Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.202003020

    Article  Google Scholar 

  25. Y.N. P.Liu, S. Wei, H.Y. Cui, J.L. Wei, J. Bu, D.F. Ni, Y. Lv, Cui, Fabrication of mesoporous TiVN powders and their electrochemical performance. J. Ceram. Soc. Jpn. 127, 728–735 (2019). https://doi.org/10.2109/jcersj2.19021

    Article  CAS  Google Scholar 

  26. Y. Wei, L. Zhang, C.H. Gong, S. Liu, M. Zhang, Y. Shi, J. Zhang, Fabrication of TiN/Carbon nanofibers by electrospinning and their electromagnetic wave absorption properties. J. Alloy Comp. 735, 1488–1493 (2018). https://doi.org/10.1016/j.jallcom.2017.11.295

    Article  CAS  Google Scholar 

  27. S.D. Liu, X.W. Meng, Z.Z. Wang, Z.H. Li, K. Yang, Enhancing microwave absorption by constructing core/shell TiN@TiO2 heterostructures through post-oxidation annealing. Mater. Lett. 257, 126677 (2019). https://doi.org/10.1016/j.matlet.2019.126677

    Article  CAS  Google Scholar 

  28. B. Gao, X. Xiao, J.J. Su, X.M. Zhang, X. Peng, J.J. Fu, P.K. Chu, Synthesis of mesoporous niobium nitride nanobelt arrays and their capacitive properties. Appl. Surf. Sci. 383, 57–63 (2016). https://doi.org/10.1016/j.apsusc.2016.04.173

    Article  ADS  CAS  Google Scholar 

  29. C. Huang, Y. Yang, J.J. Fu, J.W. Wu, H. Song, X.M. Zhang, B. Gao, P.K. Chu, K.F. Huo, Flexible Nb4N5/rGO electrode for high-performance solid state supercapacitors. J. Nanosci. Nanotechnol. 18, 30–38 (2018). https://doi.org/10.1166/jnn.2018.14595

    Article  CAS  PubMed  Google Scholar 

  30. F.Q. Guo, X.C. Jiang, X.P. Jia, S. Liang, L. Qian, Z.H. Rao, Synthesis of biomass carbon electrode materials by bimetallic activation for the application in supercapacitors. J. Electroanal. Chem. 844, 105–115 (2019). https://doi.org/10.1016/j.jelechem.2019.05.004

    Article  CAS  Google Scholar 

  31. S. Yang, S.L. Wang, X. Liu, L. Li, Biomass derived interconnected hierarchical micro-meso-macro- porous carbon with ultrahigh capacitance for supercapacitor. Carbon. 147, 540–549 (2019). https://doi.org/10.1016/j.carbon.2019.03.023

    Article  CAS  Google Scholar 

  32. S. Rehman, J.M. Wang, Q.H. Luo, M.Z. Sun, L. Jiang, Q. Han, J.C. Liu, H. Bi, Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties. Chem. Eng. J. 373, 122–130 (2019). https://doi.org/10.1016/j.cej.2019.05.040

    Article  CAS  Google Scholar 

  33. M.M. Zhang, Z.Y. Jiang, X.Y. Lv, X.F. Zhang, Y.H. Zhang, J.W. Zhang, L. Zhang, C.H. Gong, Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D: Appl. Phys. 53, 02LT01 (2020). https://doi.org/10.1088/1361-6463/ab48a7

    Article  CAS  Google Scholar 

  34. Y.P. Shi, D. Li, Y. Wei, C.H. Gong, J.W. Zhang, Magnetic TiN composites for efficient microwave absorption: nanoribbons vs nanoparticles. Compos. Commun. 28, 100919 (2021). https://doi.org/10.1016/j.coco.2021.100919

    Article  Google Scholar 

  35. Y.H. Zhang, H.X. Si, S.C. Liu, Z.Y. Jiang, J.W. Zhang, C.H. Gong, Facile synthesis of BN/Ni nanocomposites for effective regulation of microwave absorption performance. J. Alloy Comp. 850, 156680 (2021). https://doi.org/10.1016/j.jallcom.2020.156680

    Article  CAS  Google Scholar 

  36. J.L. Kuang, Q. Qin, T. Xiao, X.J. Hou, P. Jiang, Q. Wang, W.B. Cao, Tunable dielectric permittivity and microwave absorption properties of Pt-decorated SiC nanowires prepared by magnetic sputtering. Mater. Lett. 245, 90–93 (2019). https://doi.org/10.1016/j.matlet.2019.02.099

    Article  CAS  Google Scholar 

  37. K. Asami, Characterization of heterogeneous systems by dielectric spectroscopy. Prog Polym. Sci. 27, 1617–1659 (2002). https://doi.org/10.1016/S0079-6700(02)00015-1

    Article  CAS  Google Scholar 

  38. P. Wang, L.F. Cheng, L.T. Zhang, Lightweight, flexible SiCN ceramic nanowires applied as effective microwave absorbers in high frequency. Chem. Eng. J. 338, 248–260 (2018). https://doi.org/10.1016/j.cej.2017.12.008

    Article  ADS  CAS  Google Scholar 

  39. C.P. Li, Y.Q. Ge, X.H. Jiang, Z.M. Zhang, L.M. Yu, The rambutan-like C@NiCo2O4 composites for enhanced microwave absorption performance. J. Mater. Sci. Mater. El. 30, 3124–3136 (2019). https://doi.org/10.1007/s10854-018-00592-3

    Article  CAS  Google Scholar 

  40. M.Z. Liu, J.S. Chen, B.C. Li, B. Wang, Q. Han, S.C. Wei, K.R. Liu, X.C. He, Preparation of microcrystalline graphite/zinc ferrite composites with enhanced and tunable electromagnetic wave absorption using a high-temperature ball milling method. Mater. Res. Bull. 161, 112170 (2023). https://doi.org/10.1016/j.materresbull.2023.112170

    Article  CAS  Google Scholar 

  41. Y. Wei, Y.P. Shi, X.F. Zhang, Z.Y. Jiang, Y.H. Zhang, L. Zhang, J.W. Zhang, C.H. Gong, Electrospinning of lightweight TiN fibers with superior microwave absorption. J. Mater. Sci: Mater. Electron. 5, 503–541 (2019). https://doi.org/10.1007/s10854-019-01823-x

    Article  CAS  Google Scholar 

  42. S. Dong, W.Z. Zhang, X.H. Zhang, P. Hu, J.C. Han, Designable synthesis of core-shell SiCw@C heterostructures with thickness dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018). https://doi.org/10.1016/j.cej.2018.08.062

    Article  CAS  Google Scholar 

  43. H.W. Zhen, H.G. Wang, X.L. Xu, Preparation of porous carbon nanofibers with remarkable microwave absorption performance through electrospinning. Mater. Lett. 249, 210–213 (2019). https://doi.org/10.1016/j.matlet.2019.04.044

    Article  CAS  Google Scholar 

  44. L.R. Cui, C.H. Tian, L.L. Tang, X.J. Han, Y.H. Wang, D.W. Liu, P. Xu, C.L. Li, Y.C. Du, Space-confined synthesis of core-shell BaTiO3@Carbon microspheres as a high-performance binary dielectric system for microwave absorption. ACS Appl. Mater. Inter. 34, 31182–31190 (2019). https://doi.org/10.1021/acsami.9b09779

    Article  CAS  Google Scholar 

  45. D.W. Liu, Y.C. Du, Z.N. Li, Y.H. Wang, P. Xu, H.H. Zhao, F.Y. Wang, C.L. Li, X.J. Han, Facile synthesis of 3D flower-like ni microspheres with enhanced microwave absorption properties. J. Mater. Chem. C 6, 9615 (2018). https://doi.org/10.1039/C8TC02931H

    Article  CAS  Google Scholar 

  46. H. Liu, L. Li, X.X. Wang, G.Z. Cui, X.L. Lv, Superior microwave absorption properties derived from the unique 3D porous heterogeneous structure of a CoS@Fe3O4@rGO aerogel. Materials. 13, 4527 (2020). https://doi.org/10.3390/ma13204527

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, X.W. He, K.H. Su, Q.Y. Zhang, Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11, 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0

    Article  CAS  Google Scholar 

  48. F. Pan, Y.P. Rao, D. Batalu, L. Cai, Y.Y. Dong, X.J. Zhu, Y.Y. Shi, Z. Shi, Y.W. Liu, W. Lu, Nano-Micro Lett. 14, 140 (2022). https://doi.org/10.1007/s40820-022-00869-7. Macroscopic Electromagnetic Cooperative Network-Enhanced MXene/Ni Chains Aerogel-Based Microwave Absorber with Ultra-Low Matching Thickness

    Article  ADS  CAS  Google Scholar 

  49. B.J.W. Wang, B.B. Wang, A.L. Feng, Z.R. Jia, G.L. Wu, Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement. J. Alloy Comp. 834, 155092 (2020). https://doi.org/10.1016/j.jallcom.2020.155092

    Article  CAS  Google Scholar 

  50. H.L. Yang, Z.J. Shen, H.L. Peng, Z.Q. Xiong, C.B. Liu, Y. Xie, 1D-3D mixed-dimensional MnO2@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem. Eng. J. 417, 128087 (2021). https://doi.org/10.1016/j.cej.2020.128087

    Article  CAS  Google Scholar 

  51. H. Cao, H.L. Li, L.H. Liu, K.N. Xue, X.K. Niu, J. Hou, L. Chen, Salt-Templated nanoarchitectonics of CoSe2-NC nanosheets as an efficient bifunctional oxygen electrocatalyst for water splitting. Int. J. Mol. Sci. 23, 5239 (2022). https://doi.org/10.3390/ijms23095239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. J. Weerasinghe, K. Prasad, J. Mathew, E. Trifoni, O. Baranov, I. Levchenko, K. Bazaka, Carbon nanocomposites in aerospace technology: a way to protect low-orbit satellites. Nanomaterials. 13, 1763 (2023). https://doi.org/10.3390/nano13111763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. J.W. Ge, Y. Cui, Y.H. Cai, J.X. Qian, L. Liu, F.D. Meng, F.H. Wang, 2D organic-α-Co(OH)2 material and derived Co/C composites with bifunctions of anti-corrosion and microwave absorption. Compos. Part. B 224, 109172 (2021). https://doi.org/10.1016/j.compositesb.2021.109172

    Article  CAS  Google Scholar 

  54. J.L. Li, Y. Guo, R.Q. Yang, Z.Y. Liu, H.X. Tian, W. Tian, Y.F. Liu, X. Jian, Achieving ultra-low frequency microwave absorbing properties based on anti-corrosive silica-pinned flake FeSiAl hybrid with full L band absorption. J. Alloy Comp. 888, 161574 (2021). https://doi.org/10.1016/j.jallcom.2021.161574

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by Hebei Natural Science Foundation (Grant No. E2021209120).

Author information

Authors and Affiliations

Authors

Contributions

YC: contributed to conceptualization, synthesis, performance testing and writing-original draft. CL: contributed to investigation, methodology and synthesis. JL: contributed to synthesis, performance testing and writing—review. YW: contributed to resources and formal analysis. DL: contributed to formal analysis and performance testing. JB: contributed to resources and formal analysis. HW: contributed to investigation, synthesis and performance testing. BL: contributed to idea and design of this research, writing—original draft & review & editing.

Corresponding author

Correspondence to Bo Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 523.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Chaojie, L., Jiaqi, L. et al. Enhanced anti-corrosion and microwave absorption properties of novel binary titanium niobium nitrides nanofiber. J Mater Sci: Mater Electron 35, 337 (2024). https://doi.org/10.1007/s10854-024-12114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12114-5

Navigation