Skip to main content
Log in

A method for direct determination of voltage dependent contact resistance and mobility of an organic field effect transistor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The field effect mobility of charge carrier is extracted from the transfer characteristics of an Organic Field Effect Transistor (OFET). This value does not reflect gate-field-dependence. Various methods for measuring contact resistance exists and gate-field-dependent contact resistance can be extracted from the output characteristics of OFET by the method of Transition Voltage Method (TVM). In this report, a simple and generic analytical framework has been developed to extract gate-field-dependent mobility and contact-resistance simultaneously from the output characteristics of an OFET. This method is applied to the output characteristics of an OFET based on 6,13-Bis(triisopropylsilylethynyl)Pentacene, commonly known as TIPS Pentacene and P3HT. For TIPS Pentacene, the gate-field-dependent mobility values from this method are in the order of 10−3 cm2 V−1 s−1 and the mobility value from transfer characteristics is in the order of 10−2 cm2 V−1 s−1. Both the methods yielded mobility values in the order of 10−2 cm2 V−1 s−1 in case of P3HT based OFET. The effect of gate field on carrier mobility is discussed for an OFET in general. The extracted values for contact-resistance by the present method (~ a few MΩ) and TVM (a little over 10 MΩ) are also found to differ by one order of magnitude for TIPS Pentacene OFET and are in the same order for P3HT based OFET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210–1212 (1986)

    Article  ADS  CAS  Google Scholar 

  2. Z. Bao, A. Dodabalapur, A.J. Lovinger, Appl. Phys. Lett. 69, 4108–4110 (1996)

    Article  ADS  CAS  Google Scholar 

  3. M. Sonntag, K. Kreger, D. Hanft, P. Strohriegl, S. Setayesh, D. De Leeuw, Chem. Mater. 17, 3031–3039 (2005)

    Article  CAS  Google Scholar 

  4. Y. Xu, T. Minari, K. Tsukagoshi, J.A. Chroboczek, G. Ghibaudo, J. Appl. Phys. 107, 114507 (2010)

    Article  ADS  Google Scholar 

  5. V. Podzorov, V.M. Pudalov, M.E. Gershenson, Appl. Phys. Lett. 82, 1739–1741 (2003)

    Article  ADS  CAS  Google Scholar 

  6. H. Rost, J. Ficker, J.S. Alonso, L. Leenders, I. McCulloch, Synth. Met. 145, 83–85 (2004)

    Article  CAS  Google Scholar 

  7. S. Faraji, E. Danesh, D.J. Tate, M.L. Turner, L.A. Majewski, J. Phys. D 49, 185102 (2016)

    Article  ADS  Google Scholar 

  8. P.-H. Chu, L. Zhang, N.S. Colella, B. Fu, J.O. Park, M. Srinivasarao, A.L. Briseño, E. Reichmanis, ACS Appl. Mater. Interfaces 7, 6652–6660 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. K. Baeg, Y. Noh, H. Sirringhaus, D. Kim, Adv. Funct. Mater. 20, 224–230 (2010)

    Article  CAS  Google Scholar 

  10. J. Lu, D. Liu, J. Zhou, Y. Chu, Y. Chen, X. Wu, J. Huang, Adv. Funct. Mater. 27, 1700018 (2017)

    Article  Google Scholar 

  11. X. Wu, S. Mao, J. Chen, J. Huang, Adv. Mater. 30, 1705642 (2018)

    Article  Google Scholar 

  12. H. Sirringhaus, Adv. Mater. 26, 1319–1335 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. B. Balambiga, P. Devibala, P.M. Imran, N.S.P. Bhuvanesh, S. Nagarajan, ChemPhysChem 23, e202200350 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. H.R. Tseng, H. Phan, C. Luo, M. Wang, L.A. Perez, S.N. Patel, L. Ying, E.J. Kramer, T.-Q. Nguyen, G.C. Bazan, A.J. Heeger, Adv. Mater. 26, 2993–2998 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Yuan, G. Giri, A.L. Ayzner, A.P. Zoombelt, S.C.B. Mannsfeld, J. Chen, D. Nordlund, M.F. Toney, J. Huang, Z. Bao, Nat. Commun. 5, 3005 (2014)

    Article  ADS  PubMed  Google Scholar 

  16. E.G. Bittle, J.I. Basham, T.N. Jackson, O.D. Jurchescu, D.J. Gundlach, Nat. Commun. 7, 10908 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. V. Podzorov, MRS Bull. 38, 15–24 (2013)

    Article  ADS  Google Scholar 

  18. K. Hong, S.Y. Yang, C. Yang, S.H. Kim, D. Choi, C.E. Park, Org. Electron. 9, 864–868 (2008)

    Article  CAS  Google Scholar 

  19. Y. Kim, K. Broch, W. Lee, H. Ahn, J. Lee, D. Yoo, J. Kim, S. Chung, H. Sirringhaus, K. Kang, Adv. Funct. Mater. 30, 2000058 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Xu, T. Minari, K. Tsukagoshi, R. Gwoziecki, R. Coppard, F. Balestra, J.A. Chroboczek, G. Ghibaudo, Appl. Phys. Lett. 97, 033503 (2010)

    Article  ADS  Google Scholar 

  21. S. Jung, J.W. Jin, V. Mosser, Y. Bonnassieux, G. Horowitz, IEEE Trans. Electron Devices 66, 4894–4900 (2019)

    Article  ADS  CAS  Google Scholar 

  22. C. Vanoni, S. Tsujino, T.A. Jung, Appl. Phys. Lett. 90, 193119 (2007)

    Article  ADS  Google Scholar 

  23. H. Kleemann, C. Schuenemann, A.A. Zakhidov, M. Riede, B. Lüssem, K. Leo, Org. Electron. 13, 58–65 (2012)

    Article  CAS  Google Scholar 

  24. K. Tukagoshi, F. Fujimori, T. Minari, T. Miyadera, T. Hamano, Y. Aoyagi, Appl. Phys. Lett. 91, 113508 (2007)

    Article  ADS  Google Scholar 

  25. X. Cheng, Y. Noh, J. Wang, M. Tello, J. Frisch, R. Blum, A. Vollmer, J.P. Rabe, N. Koch, H. Sirringhaus, Adv. Funct. Mater. 19, 2407–2415 (2009)

    Article  CAS  Google Scholar 

  26. C. Liu, Y. Xu, Y.-Y. Noh, Mater. Today 18, 79–96 (2015)

    Article  CAS  Google Scholar 

  27. C. Liu, Y. Xu, Y. Li, W. Scheideler, T. Minari, J. Phys. Chem. C 117, 12337–12345 (2013)

    Article  CAS  Google Scholar 

  28. Y. Shi, J. Liu, Y. Hu, W. Hu, L. Jiang, Nano Select 2, 1661–1681 (2021)

    Article  CAS  Google Scholar 

  29. R.J. Chesterfield, J.C. McKeen, C.R. Newman, C.D. Frisbie, P.C. Ewbank, K.R. Mann, L.L. Miller, J. Appl. Phys. 95, 6396–6405 (2004)

    Article  ADS  CAS  Google Scholar 

  30. P.V. Pesavento, R.J. Chesterfield, C.R. Newman, C.D. Frisbie, J. Appl. Phys. 96, 7312–7324 (2004)

    Article  ADS  CAS  Google Scholar 

  31. G.V. Leite, H.I. Boudinov, J. Electron. Mater. 48, 1268–1275 (2019)

    Article  ADS  CAS  Google Scholar 

  32. M. Waldrip, O.D. Jurchescu, D.J. Gundlach, E.G. Bittle, Adv. Funct. Mater. 30, 1904576 (2020)

    Article  CAS  Google Scholar 

  33. M. Kucinska, M.Z. Szymanski, I. Frac, F. Chandezon, J. Ulanski, Mater. Sci. Pol. 37, 249–256 (2019)

    Article  ADS  CAS  Google Scholar 

  34. K. Müller, A. Goryachko, Y. Burkov, C. Schwiertz, M. Ratzke, J. Köble, J. Reif, D. Schmeißer, Synth. Met. 146, 377–382 (2004)

    Article  Google Scholar 

  35. K.P. Puntambekar, P.V. Pesavento, C.D. Frisbie, Appl. Phys. Lett. 83, 5539–5541 (2003)

    Article  ADS  CAS  Google Scholar 

  36. S.D. Wang, Y. Yan, K. Tsukagoshi, IEEE Electron Device Lett. 31, 509–511 (2010)

    Article  ADS  Google Scholar 

  37. L. Vijayan, A. Thomas, K.S. Kumar, K.B. Jinesh, J. Sci.: Adv. Mater. Devices 3, 348–352 (2018)

    Google Scholar 

  38. P. Darmawan, T. Minari, Y. Xu, S. Li, H. Song, M. Chan, K. Tsukagoshi, Adv. Funct. Mater. 22, 4577–4583 (2012)

    Article  CAS  Google Scholar 

  39. T.C. Anglin, D.B. O’Brien, A.M. Massari, J. Phys. Chem. C 114, 17629–17637 (2010)

    Article  CAS  Google Scholar 

  40. T.B. Singh, R. Koeppe, N.S. Sariciftci, M. Morana, C.J. Brabec, Adv. Funct. Mater. 19, 789–795 (2009)

    Article  CAS  Google Scholar 

  41. Y. Zheng, A.T.S. Wee, C. Troadec, N. Chandrasekhar, Appl. Phys. Lett. 95, 143303 (2009)

    Article  ADS  Google Scholar 

  42. K.-J. Baeg, D. Khim, D.-Y. Kim, J.B. Koo, I.-K. You, W. San Choi, Y.-Y. Noh, Thin Solid Films 518, 4024–4029 (2010)

    Article  ADS  CAS  Google Scholar 

  43. K. Sakamoto, J. Ueno, K. Bulgarevich, K. Miki, Appl. Phys. Lett. 100, 123301 (2012)

    Article  ADS  Google Scholar 

  44. K. Kudo, H. Yamauchi, M. Sakai, Jpn. J. Appl. Phys. 51, 11PD05 (2012)

    Article  Google Scholar 

  45. A.K. Mahato, V. Raghuwanshi, D. Bharti, I. Varun, N. Prasad, M.S. Roy, S.P. Tiwari, Synth. Met. 248, 110–119 (2019)

    Article  CAS  Google Scholar 

  46. V. Chaudhary, R.K. Pandey, R. Prakash, N. Kumar, A.K. Singh, Synth. Met. 258, 116221 (2019)

    Article  CAS  Google Scholar 

  47. L. Janasz, M. Gradzka, D. Chlebosz, W. Zajaczkowski, T. Marszalek, A. Kiersnowski, J. Ulanski, W. Pisula, Langmuir 33, 4189–4197 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. F. Chianese, F. Chiarella, M. Barra, A. Carella, A. Cassinese, Org. Electron. 52, 206 (2018)

    Article  CAS  Google Scholar 

  49. S. Lai, P. Cosseddu, A. Bonfiglio, Appl. Phys. Lett. 110, 153304 (2017)

    Article  ADS  Google Scholar 

  50. B.H. Hamadani, C.A. Richter, D.J. Gundlach, R.J. Kline, I. McCulloch, M. Heeney, J. Appl. Phys. 102, 044503 (2007)

    Article  ADS  Google Scholar 

  51. A.B. Chwang, C.D. Frisbie, J. Phys. Chem. B 104, 12202–12209 (2000)

    Article  CAS  Google Scholar 

  52. L. Jiang, J. Liu, Y. Shi, D. Zhu, H. Zhang, Y. Hu, J. Yu, W. Hu, L. Jiang, J. Mater. Chem. C 7, 3436–3442 (2019)

    Article  CAS  Google Scholar 

  53. V. Podzorov, S.E. Sysoev, E. Loginova, V.M. Pudalov, M.E. Gershenson, Appl. Phys. Lett. 83, 3504 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Indian Institute of Technology Patna (IIT Patna).

Funding

The work was financially supported by Indian Institute of Technology Patna.

Author information

Authors and Affiliations

Authors

Contributions

SS: conducted experiment, data analysis, and wrote first draft. NR: conducted experiment. AKM: supervised the work.

Corresponding author

Correspondence to Ayash Kanto Mukherjee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikh, S., Rajan, N. & Mukherjee, A.K. A method for direct determination of voltage dependent contact resistance and mobility of an organic field effect transistor. J Mater Sci: Mater Electron 35, 346 (2024). https://doi.org/10.1007/s10854-024-12108-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12108-3

Navigation