Skip to main content
Log in

Dependence of the efficiency of ZnSnO3 nanopowder photocatalyst against Congo red on the sintering temperature of the as-prepared samples

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study deals with the performance of ZnSnO3 nanopowder as a photocatalyst in degrading the Congo red (CR) dye. The samples were prepared by co-precipitation method and sintered at different temperatures. The size, specific surface area and morphology of the nanopowder depend on the sintering temperature. The sintering temperatures are selected depending upon Thermo Gravimetric Analysis (TGA). Confirmation of the single phase crystalline structure is done using Powder X-ray diffraction (XRD). FESEM and TEM micrographs provide information on the morphology. The surface area was estimated by Brunauer-Emmett-Teller (BET) analysis and the band gap energy by ultraviolet-visible spectroscopy (UV–Vis). The photoluminescence (PL) spectra confirm the existence of oxygen vacancies. Fourier transform infrared spectroscopy (FTIR) was performed to identify the functional groups. Raman spectroscopy was used to identify the vibrational modes. The study shows that the photocatalytic efficiency increases with increasing sintering temperature. The electron scavenger H2O2 increases the degradation rate. The catalyst is very stable, as confirmed by the cyclic stability test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. G.M. Alsulaim, J. Mater. Sci. Mater. Electron. 36, 2290 (2023)

    Article  Google Scholar 

  2. F. Sordello, P. Calza, C. Minero, S. Malato, M. Minella, Catalysts. 12, 1572 (2022)

    Article  CAS  Google Scholar 

  3. M. Arif, M.Z.U. Shah, S.A. Ahmad, M.S. Shah, Z. Ali, A. Ullah, M. Idrees, J. Zeb, P. Song, T. Huang, J. Yi, Opt. Mater. 134, 113135 (2022)

    Article  CAS  Google Scholar 

  4. D. Chen, Y. Lu, J. Wu, N. Li, Y.Z. Zheng, X. Tao, J. Phys. Chem. Solids. 132, 204–212 (2019)

    Article  ADS  CAS  Google Scholar 

  5. Y. Zhou, M. Xiang, J. Zhang, T. Yao, Y. Zhou, J. Mater. Sci. Mater. Electron. 33, 25950–25963 (2022)

    Article  CAS  Google Scholar 

  6. M.A. AlNuaim, A.A. Alwasiti, Z.Y. Shnain, Chem. Pap. 77, 677–701 (2023)

    Article  CAS  Google Scholar 

  7. M. Arellano-Cortaza, E. Ramírez-Morales, U. Pal, G. Perez-Hernandez, Ceram. Int. 47, 27469–27478 (2021)

    Article  CAS  Google Scholar 

  8. Z. Du, Y. Li, D. Kuang, W. Wang, F. Yang, J. Yang, L. Hou, J. Mater. Sci. Mater. Electron. 34, 589 (2023)

    Article  CAS  Google Scholar 

  9. M.S.S. Danish, L.L. Estrella, I.M.A. Alemaida, A. Lisin, N. Moiseev, M. Ahmadi, M. Nazari, M. Wali, H. Zaheb, T. Senjyu, Metals. 11, 80 (2021)

    Article  CAS  Google Scholar 

  10. A. Ajmal, I. Majeed, R.N. Malik, H. Idrissc, M.A. Nadeem, RSC Adv. 4, 37003 (2014)

    Article  ADS  CAS  Google Scholar 

  11. B. Mandal, R. Roy, P. Mitra, Mater. Sci. Eng. C 117, 111304 (2020)

    Article  CAS  Google Scholar 

  12. F. Alakhras, E. Alhajri, R. Haounati, H. Ouachtak, A.A. Addi, T.A. Saleh, Surf. Interfaces. 20, 100611 (2020)

    Article  CAS  Google Scholar 

  13. D. Voigt, L. Sarpong, M. Bredol, Materials. 13, 4162 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y. Zeng, T. Zhang, H. Fan, G. Lu, M. Kang, Sens. Actuators B: Chem. 143, 449–453 (2009)

    Article  Google Scholar 

  15. J. Zheng, H. Hou, H. Fu, L. Gao, H. Liu, RSC Adv. 11, 20268 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Zhu, J. Liu, R. Chen, B. Feng, C. Luan, J. Ma, H. Xiao, Vacuum. 197, 110811 (2022)

    Article  ADS  CAS  Google Scholar 

  17. X. Zhu, F. Guo, J. Pan, H. Sun, L. Gao, J. Deng, X. Zhu, W. Shi, Energy Mater. 56, 4366–4379 (2021)

    CAS  Google Scholar 

  18. A.I.B. Rovisco, R.B.J.V. Pinto, R. Martins, E. Fortunato, P. Barquinha, Novel Nanomater. Intech Open (2021). https://doi.org/10.5772/intechopen.94294

    Article  Google Scholar 

  19. A.V. Borhade, Y.R. Baste, Arab. J. Chem. 10, 404–411 (2017)

    Article  Google Scholar 

  20. G. Gnanamoorthy, K. Ramar, A. Padmanaban, V.K. Yadav, K.S. Babu, V. Karthikeyan, V. Narayanan, Adv. Powder Technol. 31, 1209–1219 (2020)

    Article  CAS  Google Scholar 

  21. A. Rovisco, R. Branquinho, J. Deuermeier, T. Freire, E. Fortunato, R. Martins, P. Barquinha, ACS Appl. Nano Mater. 4, 1149–1161 (2021)

    Article  CAS  Google Scholar 

  22. M. Khatun, S. Mukherjee, P. Mitra,  Mater. Today: Proc. 66, 3211–3217 (2022)

    CAS  Google Scholar 

  23. S. Dong, L. Cui, W. Zhang, L. Xia, S. Zhou, C.K. Russell, M. Fan, J. Feng, J. Sun, Chem. Eng. J. 384, 123279 (2020)

    Article  CAS  Google Scholar 

  24. J. Huang, X. Xu, C. Gu, W. Wang, B. Geng, Y. Sun, J. Liu, Sens. Actuators B Chem. 171–172, 572–579 (2012)

    Article  Google Scholar 

  25. F. Beshkar, O. Amiri, Z. Salehi, Sep. Purif. Technol. 184, 66–71 (2017)

    Article  CAS  Google Scholar 

  26. M. Rahman, M.S. Bashar, M.L. Rahman, F.I. Chowdhury, RSC Adv. 13, 30798 (2023)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Liu, R. Röder, L. Zhang, Z. Ren, H. Chen, Z. Zhang, C. Ronning, P.X. Gao, J. Mater. Chem. A 2, 4157–4167 (2014)

    Article  CAS  Google Scholar 

  28. A. Biswas, S. Saha, N.R. Jana, ACS Appl. Nano Mater. 2, 1120–1128 (2019)

    Article  CAS  Google Scholar 

  29. J. Tauc, Amorphous and liquid semiconductor (Plenum Publishing, New York, 1974), p.441

    Book  Google Scholar 

  30. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  ADS  CAS  Google Scholar 

  31. E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  32. K.S.W. Sing, Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  33. M. Khatun, P. Mitra, S. Mukherjee, Hybrid. Adv. 4, 100079 (2023)

    Article  Google Scholar 

  34. R. Guo, Y. Guo, H. Duan, H. Li, H. Liu, ACS Appl. Mater. Interfaces. 9, 8271–8279 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. S. Koppala, R. Balan, I. Banerjee, K. Li, L. Xu, H. Liu, D.K. Kumar, K.R. Reddy, V. Sadhu, Mater. Sci. Energy Technol. 4, 113–118 (2021)

    CAS  Google Scholar 

  36. M. Ul Haq, Z. Zhang, X. Chen, N. Rahman, S. Khan, R. Khatoon, S.S. Hassan, Z. Ye, L. Zhu, J. Alloys Compd. 777, 73–83 (2019)

    Article  Google Scholar 

  37. Y. Wang, P. Gao, D. Bao, L. Wang, Y. Chen, X. Zhou, P. Yang, S. Sun, M. Zhang, Inorg. Chem. 53, 12289–12296 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. V.S. Vinila, J. Isac, Design, fabrication, and characterization of multifunctional nanomaterials (Micro and Nano Technologies) (Elsevier Science Publishing Co Inc, Hoboken, 2022)

    Google Scholar 

  39. P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9, 6814–6817 (2018)

    Article  PubMed  Google Scholar 

  40. C.B. Anucha, I. Altin, E. Bacaksiz, V.N. Dong, I. Stathopoulos, A. Polat, O.F. Yasar, Yuksel, Water. 13, 1290 (2021)

    Article  CAS  Google Scholar 

  41. Y. Liu, Z.H. Yang, P.P. Song, R. Xu, H. Wang, Appl. Surf. Sci. 430, 561–570 (2018)

    Article  ADS  CAS  Google Scholar 

  42. J. Chen, W. Luo, S. Yu, X. Yang, Z. Wu, H. Zhang, J. Gao, Y.W. Mai, Y. Li, Y. Jia, Ceram. Int. 46, 9786–9793 (2020)

    Article  CAS  Google Scholar 

  43. F. Chen, Q. Yang, Y. Zhong, H. An, J. Zhao, T. Xie, Q. Xu, X. Li, D. Wang, G. Zeng, Water Res. 101, 555–563 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. J. Zhao, J. Nan, Z. Zhao, N. Li, J. Liu, F. Cui, Appl. Catal. B: Environ. 202, 509–517 (2017)

    Article  CAS  Google Scholar 

  45. K. Mageshwari, T.G. Kim, J. Park, J. Mater. Sci: Mater. Electron. 27, 4093–4097 (2016)

    CAS  Google Scholar 

  46. Y.C. Wang, J.M. Wu, Adv. Funct. Mater. 30, 1907619 (2019)

    Article  Google Scholar 

  47. G.S. Huang, X.L. Wu, Y.F. Mei, X.F. Shao, G.G. Siu, J. Appl. Phys. 93, 582 (2003)

    Article  ADS  CAS  Google Scholar 

  48. P. Prabakaran, M.V.A. Raj, J.J. Mathen, S. Prathap, J. Madhava, Recent. Trends Mater. Sci. Appl. 189, 255–262 (2017)

    Article  CAS  Google Scholar 

  49. S. Paria, S. Ojha, S.K. Karan, S.K. Si, R. Bera, A.K. Das, A. Maitra, L. Halder, A. De, B.B. Khatua, ACS Appl. Electron. Mater. 2, 2565–2578 (2020)

    Article  CAS  Google Scholar 

  50. N. Mayedwa, N. Mongwaketsi, S. Khamlich, K. Kaviyarasu, N. Matinise, M. Maaza, Appl. Surf. Sci. 446, 250–257 (2018)

    Article  ADS  CAS  Google Scholar 

  51. I. Saafi, R. Dridi, R. Mimouni, A. Amlouk, A. Yumak, K. Boubaker, P. Petkova, M. Amlouk, Ceram. Int. 42, 6273–6281 (2016)

    Article  CAS  Google Scholar 

  52. J.L. Mi, K.M.Ø. Jensen, C. Tyrsted, M. Bremholm, B.B. Iversen, Cryst. Eng. Comm. 17, 6868–6877 (2015)

    Article  CAS  Google Scholar 

  53. S. Alafnan, A. Awotunde, G. Glatz, S. Adjei, I. Alrumaih, I.A. Gowida, J. Pet. Sci. Eng. 207, 109172 (2021)

    Article  CAS  Google Scholar 

  54. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  CAS  Google Scholar 

  55. L. Jiang, K. Xue, Z. Chen, Q. Cui, S. Xu, Microporous Mesoporous Mater. 329, 111532 (2022)

    Article  CAS  Google Scholar 

  56. J. Zhu, H. Chen, H. Liu, X. Yang, L. Lu, X. Wang, Mater. Sci. Eng: A 384, 172–176 (2004)

    Article  Google Scholar 

  57. A.B. Habtemariam, A.K. Kereta, Lett. Appl. Nano Bio Sci. 10, 1856–1861 (2020)

    Article  Google Scholar 

  58. E. Evgenidou, K. Fytianos, I. Poulios, Appl. Catal. B: Environ. 59, 81–89 (2005)

    Article  CAS  Google Scholar 

  59. M.A. Behnajady, N. Modirshahla, M. Shokri, Chemosphere. 55, 129–134 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors (MK) thankfully acknowledges UGC for granting her fellowship. The authors acknowledge the University Grants Commission (UGC, India; Student ID: 1556/ (CSIR-UGC NET June 2019)), for providing the financial assistance by recognizing the Department of Physics, The University of Burdwan as a Centre for Advanced Study (CAS) under the thrust area Condensed Matter Physics including Laser applications (No. F. 530/20/CAS II/2018(SAP-I)).The authors also acknowledge Dr. Joydeep Chowdhury, Department of Physics, Jadavpur University, Kolkata, India for his kind support by providing the Raman data.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MK: conceptualization: equal, data acquisition: lead, formal analysis: lead, investigation: lead, methodology: lead, software: equal, writing original draft: lead, editing: equal. BM: formal analysis: supporting, software: equal. SM: conceptualization: equal, supervision, writing review & editing: equal. PM: conceptualization: equal, supervision, writing—review & editing: equal.

Corresponding author

Correspondence to Partha Mitra.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatun, M., Mandal, B., Mukherjee, S. et al. Dependence of the efficiency of ZnSnO3 nanopowder photocatalyst against Congo red on the sintering temperature of the as-prepared samples. J Mater Sci: Mater Electron 35, 325 (2024). https://doi.org/10.1007/s10854-024-12075-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12075-9

Navigation