Skip to main content
Log in

Synthesis, phase structure and dielectric properties of MgTiTa2O8 by molten salt method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The MgTiTa2O8 ceramics were synthesized in the molten salt KCl. We have conducted an examination of the phases, microstructure, and microwave dielectric characteristics of MgTiTa2O8 ceramics. This investigation involved the use of X-ray diffraction (XRD), Rietveld refinement, and scanning electron microscopy (SEM). The result demonstrated that MgTiTa2O8 ceramics exhibited crystallization into a tri-rutile structure with space group P42/mnm (136). With the increase of temperature, the relative density gradually increases, which benefit the dielectric constant and Q × f value. However, as the temperature continues to rise, there is a decrease in the εr and Q × f value, which can be ascribed to over-sintering of the sample and a resultant reduction in the uniformity of grain size. The correlation between oxygen octahedron distortion dielectric, bond strength, packing fraction, and properties of microwave is discussed. The Q × f value increases with the increase of atomic packing density. The value of τf decreases with the increase of bond energy and has no direct relation with the distortion of oxygen octahedron. The MgTiTa2O8 ceramics sintered at 1150 °C exhibited superior dielectric characteristics of εr = 35.1, Q × f = 32,200 GHz, τf = + 95.4 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. T.A. Vanderah, Science. 298, 1182–1184 (2002)

    CAS  PubMed  Google Scholar 

  2. A. Feteira, D.C. Sinclair, I.M. Reaney, J. Am. Ceram. Soc. 89, 2105–2113 (2006)

    CAS  Google Scholar 

  3. M. Mirsaneh, I.M. Reaney, P.F. James, P.V. Hatton, J. Am. Ceram. Soc. 89, 587–595 (2006)

    CAS  Google Scholar 

  4. I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063–2072 (2006)

    CAS  Google Scholar 

  5. H. Ohsato, Ceram. Int. 38, S141–S146 (2012)

    CAS  Google Scholar 

  6. Q. Liao, L. Li, Dalton Trans. 41, 6963–6969 (2012)

    CAS  PubMed  Google Scholar 

  7. J.-H. Park, S. Nahm, J.-G. Park, J. Alloy Compd. 537, 221–226 (2012)

    CAS  Google Scholar 

  8. Y.-Q. Chu, L.-P. Zhao, Y. Liu, P. Liu, Ceram. Int. 45, 23853–23856 (2019)

    Google Scholar 

  9. D.A. Vinnik, V.E. Zhivulin, D.A. Uchaev, S.A. Gudkova, D.E. Zhivulin, A. Yu Starikov, S.V. Trukhanov, V.A. Turchenko, T.I. Zubar, T.P. Gavrilova, R.M. Eremina, E. Fadeev, E. Lähderanta, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, J. Alloy Compd. 859, 158365 (2021)

    CAS  Google Scholar 

  10. A.V. Trukhanov, K.A. Darwish, M.M. Salem, O.M. Hemeda, M.I. Abdel Ati, M.A. Darwish, E.Y. Kaniukov, S.V. Podgornaya, V.A. Turchenko, D.I. Tishkevich, T.I. Zubar, K.A. Astapovich, V.G. Kostishyn, S.V. Trukhanov, J. Alloy Compd. 866, 158961 (2021)

    CAS  Google Scholar 

  11. A.V. Trukhanov, V.A. Turchenko, V.G. Kostishin, F. Damay, F. Porcher, N. Lupu, B. Bozzo, I. Fina, S. Polosan, M.V. Silibin, M.M. Salem, D.I. Tishkevich, S.V. Trukhanov, J. Alloy Compd. 886, 161249 (2021)

    CAS  Google Scholar 

  12. S.Y. Wang, Y.C. Zhang, J. Eur. Ceram. Soc. 40, 1181–1185 (2020)

    CAS  Google Scholar 

  13. A. Li, Y.-. Wang, X. Xiong, R. Liu, Ceram. Int. 46, 13331–13341 (2020)

    CAS  Google Scholar 

  14. N.-. Wu, Y.-. Wang, R.-. Liu, H.-. Liu, R. Liu, A. Li, X. Xiong, Ceram. Int. 46, 15003–15012 (2020)

    CAS  Google Scholar 

  15. Y. Yu, Y. Zhao, T.-D. Zhang, R.-X. Song, Y.-L. Zhang, Y.-L. Qiao, W.-L. Li, W.-D. Fei, Ceram. Int. 44, 6866–6871 (2018)

    CAS  Google Scholar 

  16. Y. Zhao, Y. Li, R. Zhang, Ceram. Int. 44, 21262–21268 (2018)

    CAS  Google Scholar 

  17. X. Chen, Z. Peng, X. Chao, Z. Yang, Ceram. Int. 43, 11920–11928 (2017)

    CAS  Google Scholar 

  18. Z. Peng, P. Liang, B. Chen, Y. Xiang, H. Peng, D. Wu, X. Chao, Z. Yang, Ceram. Int. 45, 11899–11904 (2019)

    CAS  Google Scholar 

  19. Q. Zhang, B. Chen, D. Wu, Z. Peng, X. Qiao, X. Chao, Z. Yang, Ceram. Int. 46, 28285–28291 (2020)

    CAS  Google Scholar 

  20. L. Liu, F. Gao, G. Hu, J. Liu, Powder Technol. 235, 806–813 (2013)

    CAS  Google Scholar 

  21. L. Liu, F. Gao, G. Hu, J. Liu, Powder Technol. 246, 395–397 (2013)

    CAS  Google Scholar 

  22. M. Kamnoy, W. Hiransit, C. Suksri, P. Parjansri, U. Intatha, S. Eitssayeam, J. Nanosci. Nanotechnol. 16, 12811–12816 (2016)

    CAS  Google Scholar 

  23. P. Parjansri, M. Kamnoy, S. Eitssayeam, U. Intatha, J. Nanosci. Nanotechnol. 16, 12956–12961 (2016)

    CAS  Google Scholar 

  24. C. Suksri, P. Parjansri, S. Thonglem, U. Intatha, S. Eitssayeam, J. Nanosci. Nanotechnol. 16, 12817–12822 (2016)

    CAS  Google Scholar 

  25. L. Guo, J. Dai, J. Tian, T. He, Ceram. Int. 34, 1783–1785 (2008)

    CAS  Google Scholar 

  26. T. He, J. Dai, J. Tian, Z. Zhu, L. Guo, Z. Liu, X. Qu, Z. Shen, P. Wang, Ceram. Int. 34, 1561–1563 (2008)

    CAS  Google Scholar 

  27. H. Yang, L. Chai, G. Liang, M. Xing, Z. Fang, X. Zhang, T. Qin, E. Li, J. Adv. Ceram. 12, 296–308 (2023)

    CAS  Google Scholar 

  28. D.A. Vinnik, D.S. Klygach, V.E. Zhivulin, A.I. Malkin, M.G. Vakhitov, S.A. Gudkova, D.M. Galimov, D.A. Zherebtsov, E.A. Trofimov, N.S. Knyazev, V.V. Atuchin, S.V. Trukhanov, A.V. Trukhanov, J. Alloy Compd. 30, 177–183 (2018)

    Google Scholar 

  29. A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, A.Y. Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanov, M. Zdorovets, J. Alloy Compd. 5, 1193–1202 (2019)

    Google Scholar 

  30. V.G. Vitalii Turchenko, S. Kostishyn d, F. Trukhanov, F.P. Damay, M. Balasoiu, Nicoleta Lupu, Bernar Bozzo, Ignasi Fina, Alex Trukhanov, Janusz Waliszewski, Katarzyna Recko, Silviu Polosan. J. Alloy Compd. 821, 153412 (2020)

    Google Scholar 

  31. A.V. Trukhanov, K.A. Astapovich, M.A. Almessiere, V.A. Turchenko, E.L. Trukhanova, V.V. Korovushkin, A.A. Amirov, M.A. Darwish, D.V. Karpinsky, D.A. Vinnik, D.S. Klygach, M.G. Vakhitov, M.V. Zdorovets, A.L. Kozlovskiy, S.V. Trukhanov, J. Alloy Compd. 822, 153575 (2020)

    CAS  Google Scholar 

  32. Q. Liao, L. Li, X. Ren, X. Ding, J. Am. Ceram. Soc. 94, 3237–3240 (2011)

    CAS  Google Scholar 

  33. Q. Liao, L. Li, P. Zhang, X. Ding, X. Ren, W. Zhang, J. Mater. Res. 26, 2503–2510 (2011)

    ADS  CAS  Google Scholar 

  34. N. Kumada, N. Koike, K. Nakanome, S. Yanagida, T. Takei, A. Miura, E. Magome, C. Moriyoshi, Y. Kuroiwa, J. Asian Ceram. Soc. 5, 284–289 (2017)

    Google Scholar 

  35. N. Kumada, K. Nakanome, S. Yanagida, T. Takei, I. Fujii, S. Wada, C. Moriyoshi, Y. Kuroiwa, J. Asian Ceram. Soc. 6, 247–253 (2018)

    Google Scholar 

  36. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, J. Alloy Compd. 25, 383–393 (2016)

    Google Scholar 

  37. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L.Y. Matzui, E.L. Trukhanova, S.V. Trukhanov, J. Alloy Compd. 25, 247–256 (2018)

    Google Scholar 

  38. A. Harsimrat Kaur, C. Marwaha, S.B. Singh, R. Narang, S. Jotania, A.S.B. Jacobo, S.V. Sombra, A.V. Trukhanov, P. Trukhanov, Dhruv, J. Alloy Compd. 25, 1220–1229 (2019)

    Google Scholar 

  39. F. Yujie Yang, J. Wang, D. Shao, H. Huang, A.V. He, S.V. Trukhanov, Trukhanov, J. Alloy Compd. 15, 616–623 (2018)

    Google Scholar 

  40. R. Zuo, Y. Xu, M. Shi, W. Li, L. He, J. Eur. Ceram. Soc. 38, 4677–4681 (2018)

    CAS  Google Scholar 

  41. P.R. Rios, Acta Mater. 45, 1785–1789 (1997)

    ADS  CAS  Google Scholar 

  42. P.R. Rios, Acta Mater. 52, 249–256 (2004)

    ADS  CAS  Google Scholar 

  43. P.R. Rios, G. Gottstein, Acta Mater. 49, 2511–2518 (2001)

    ADS  CAS  Google Scholar 

  44. P.R. Rios, T. Yamamoto, T. Kondo, T. Sakuma, Acta Mater. 46, 1617–1623 (1998)

    ADS  CAS  Google Scholar 

  45. W.-S. Xia, L.-X. Li, L.-J. Ji, P. Zhang, P.-F. Ning, Q.-W. Liao, Mater. Lett. 66, 296–298 (2012)

    CAS  Google Scholar 

  46. W.-S. Xia, L.-X. Li, P.-F. Ning, Q.-W. Liao, J. Am. Ceram. Soc. 95, 2587–2592 (2012)

    CAS  Google Scholar 

  47. C. Yin, Z. Yu, L. Shu, L. Liu, Y. Chen, C. Li, J. Adv. Ceram. 10, 108–119 (2021)

    CAS  Google Scholar 

  48. J. Ren, K. Bi, X. Fu, Z. Peng, J. Mater. Chem. C 6, 11465–11470 (2018)

    CAS  Google Scholar 

  49. J. Ren, K. Bi, X. Fu, Z. Peng, Ceram. Int. 44, 8928–8933 (2018)

    CAS  Google Scholar 

  50. J. Ren, P. Yang, Z. Peng, X. Fu, Ceram. Int. 47, 20867–20874 (2021)

    CAS  Google Scholar 

  51. H.T. Wu, Y.S. Jiang, Y.L. Yue, Ceram. Int. 38, 5151–5156 (2012)

    CAS  Google Scholar 

  52. Y. Yue, B. Wang, N. Miao, C. Jiang, H. Lu, B. Zhang, Y. Wu, J. Ren, M. Wang, Ceram. Int. 47, 2367–2373 (2021)

    CAS  Google Scholar 

  53. C.R. Ferrari, A.C. Hernandes, J. Eur. Ceram. Soc. 22, 2101–2105 (2002)

    CAS  Google Scholar 

  54. H. Tamura, J. Eur. Ceram. Soc. 26, 1775–1780 (2006)

    CAS  Google Scholar 

  55. J.H. Park, Y.J. Choi, S. Nahm, J.G. Park, J. Alloys Compd. 509, 6908–6912 (2011)

    CAS  Google Scholar 

  56. C.F. Tseng, J. Eur. Ceram. Soc. 35, 383–387 (2015)

    CAS  Google Scholar 

  57. N. Ichinose, T. Shimada, J. Eur. Ceram. Soc. 26, 1755–1759 (2006)

    CAS  Google Scholar 

  58. M.J. Wu, Y.C. Zhang, J.D. Chen, M.Q. Xiang, J. Alloys Compd. 747, 394–400 (2018)

    CAS  Google Scholar 

  59. S.D. Ramarao, V.R.K. Murthy, Scr. Mater. 69, 274–277 (2013)

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 12174035 and U21A6004) and the open research fund of Songshan Lake Materials Laboratory (Grant No. 2023SLABFK10).

Author information

Authors and Affiliations

Authors

Contributions

LL: conceptualization, data curation, methodology and writing. JR: reviewing and editing. BZ: reviewing and editing. XF: conceptualization and supervision. ZP: conceptualization and supervision.

Corresponding authors

Correspondence to Zhijian Peng or Xiuli Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not involve animal studies. Finally, all authors read and approved the final manuscript.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35414.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, L., Ren, J., Zhang, B. et al. Synthesis, phase structure and dielectric properties of MgTiTa2O8 by molten salt method. J Mater Sci: Mater Electron 35, 367 (2024). https://doi.org/10.1007/s10854-024-12064-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12064-y

Navigation