Skip to main content
Log in

ZIF-8-derived ZnO doped with In for high-performance ethanol gas sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ethanol is a versatile but volatile chemical that may threaten both industrial safety and human health. To address the need for improved detection and monitoring of ethanol leakage and concentration, we successfully synthesized indium-doped ZnO (In-ZnO) with a hollow nanocage structure through the hydrothermal method and calcination, effectively expanding the specific surface area from 9.54 to 18.45 m2 g−1, increasing the proportion of absorbed oxygen from 5.6% to 9.4% and that of oxygen vacancies from 32.7% to 38.5%, and promoting the interaction between ethanol molecules and active sites. Our optimized doping of 1% In-ZnO exhibited a substantial increase in its responsiveness when exposed to 100 ppm ethanol at 328 °C (R = 313.8). This outcome stands as a pivotal reference point for the development of sensor materials characterized by superior performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6
Fig. 7 
Fig. 8 

Similar content being viewed by others

Data availability

Data are available on request from the authors. The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Y. Zhao, Y. Liu, B. Han, M. Wang, Q. Wang, Y.-N. Zhang, Fiber optic volatile organic compound gas sensors: a review. Coord. Chem. Rev. (2023). https://doi.org/10.1016/j.ccr.2023.215297

    Article  Google Scholar 

  2. M. Ghazi, S. Janfaza, H. Tahmooressi, N. Tasnim, M. Hoorfar, Selective detection of VOCs using microfluidic gas sensor with embedded cylindrical microfeatures coated with graphene oxide. J. Hazard. Mater. (2022). https://doi.org/10.1016/j.jhazmat.2021.127566

    Article  PubMed  Google Scholar 

  3. A. Bag, N.-E. Lee, Gas sensing with heterostructures based on two-dimensional nanostructured materials: a review. J. Mater. Chem. C 7(43), 13367–13383 (2019). https://doi.org/10.1039/c9tc04132j

    Article  CAS  Google Scholar 

  4. S. Acharyya, S. Nag, S. Kimbahune, A. Ghose, A. Pal, P.K. Guha, Selective discrimination of VOCs applying gas sensing kinetic analysis over a metal oxide-based chemiresistive gas sensor. ACS Sens. 6(6), 2218–2224 (2021). https://doi.org/10.1021/acssensors.1c00115

    Article  CAS  PubMed  Google Scholar 

  5. K. Zhang, S. Qin, P. Tang, Y. Feng, D. Li, Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-In2O3 heterostructures. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2020.122191

    Article  PubMed  PubMed Central  Google Scholar 

  6. P. Wang, S.Z. Wang, Y.R. Kang, Z.S. Sun, X.D. Wang, Y. Meng, M.H. Hong, W.-F. Xie, Cauliflower-shaped Bi2O3–ZnO heterojunction with superior sensing performance towards ethanol. J. Alloys Compds. (2021). https://doi.org/10.1016/j.jallcom.2020.157152

    Article  Google Scholar 

  7. B. Jiang, J. Lu, W. Han, Y. Sun, Y. Wang, P. Cheng, H. Zhang, C. Wang, G. Lu, Hierarchical mesoporous zinc oxide microspheres for ethanol gas sensor. Sens. Actuators B: Chem. (2022). https://doi.org/10.1016/j.snb.2021.131333

    Article  PubMed  Google Scholar 

  8. L.-Y. Gai, R.-P. Lai, X.-H. Dong, X. Wu, Q.-T. Luan, J. Wang, H.-F. Lin, W.-H. Ding, G.-L. Wu, W.-F. Xie, Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 41(6), 1818–1842 (2022). https://doi.org/10.1007/s12598-021-01937-4

    Article  CAS  Google Scholar 

  9. J.N. Mao, B. Hong, H.D. Chen, M.H. Gao, J.C. Xu, Y.B. Han, Y.T. Yang, H.X. Jin, D.F. Jin, X.L. Peng et al., Highly improved ethanol gas response of n-type α-Fe2O3 bunched nanowires sensor with high-valence donor-doping. J. Alloys Compds. (2020). https://doi.org/10.1016/j.jallcom.2020.154248

    Article  Google Scholar 

  10. H. Yuan, N. Li, W. Fan, H. Cai, D. Zhao, Metal-organic framework based gas sensors. Adv. Sci. (2021). https://doi.org/10.1002/advs.202104374

    Article  Google Scholar 

  11. M.-S. Yao, W.-H. Li, G. Xu, Metal–organic frameworks and their derivatives for electrically-transduced gas sensors. Coord. Chem. Rev. (2021). https://doi.org/10.1016/j.ccr.2020.213479

    Article  Google Scholar 

  12. M. Drobek, J.-H. Kim, M. Bechelany, C. Vallicari, A. Julbe, S.S. Kim, MOF-based membrane encapsulated zno nanowires for enhanced gas sensor selectivity. ACS Appl. Mater. Interfaces 8(13), 8323–8328 (2016). https://doi.org/10.1021/acsami.5b12062

    Article  CAS  PubMed  Google Scholar 

  13. E.-X. Chen, H. Yang, J. Zhang, Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 53(11), 5411–5413 (2014). https://doi.org/10.1021/ic500474j

    Article  CAS  PubMed  Google Scholar 

  14. D. Huang, Y. Wang, X. Wang, H. Li, X. Tan, Y. Chen, W. Wang, Q. Cheng, M. Yi, G. Han et al., Rational in situ construction of Fe-modified MXene-derived MOFs as high-performance acetone sensor. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2022.136526

    Article  PubMed  PubMed Central  Google Scholar 

  15. J. Xian, J. Li, W. Wang, J. Zhu, P. Li, C.M. Leung, M. Zeng, X. Lu, X. Gao, J.-M. Liu, Enhanced specific surface area of ZIF-8 derived ZnO induced by sulfuric acid modification for high-performance acetone gas sensor. Appl. Surf. Sci. (2023). https://doi.org/10.1016/j.apsusc.2022.156175

    Article  Google Scholar 

  16. L. Cheng, Y. He, M. Gong, X. He, Z. Ning, H. Yu, Z. Jiao, MOF-derived synthesis of Co3O4 nanospheres with rich oxygen vacancies for long-term stable and highly selective n-butanol sensing performance. J. Alloys Compds. (2021). https://doi.org/10.1016/j.jallcom.2020.158205

    Article  Google Scholar 

  17. X. Bu, K. Ding, Q. Wu, Y. Yuan, W. Liu, C. Han, X. Wang, X. Li, The synthesis of metal organic frameworks derived 3D porous V2O5 microrods for NO2 detection and its UV-enhanced sensing performance. Sens. Actuators B: Chem. (2023). https://doi.org/10.1016/j.snb.2023.134231

    Article  Google Scholar 

  18. S. Hussain, J.N. Okai Amu-Darko, M. Wang, A.A. Alothman, M. Ouladsmane, S.A. Aldossari, M.S. Khan, G. Qiao, G. Liu, CuO-decorated MOF derived ZnO polyhedral nanostructures for exceptional H2S gas detection. Chemosphere (2023). https://doi.org/10.1016/j.chemosphere.2023.137827

    Article  PubMed  Google Scholar 

  19. M. Al-Hashem, S. Akbar, P. Morris, Role of oxygen vacancies in nanostructured metal-oxide gas sensors: a review. Sens. Actuators B: Chem. (2019). https://doi.org/10.1016/j.snb.2019.126845

    Article  Google Scholar 

  20. V.L. Patil, D.S. Dalavi, S.B. Dhavale, S.A. Vanalakar, N.L. Tarwal, A.S. Kalekar, J.H. Kim, P.S. Patil, Indium doped ZnO nanorods for chemiresistive NO2 gas sensors. New J. Chem. 46(16), 7588–7597 (2022). https://doi.org/10.1039/d2nj00114d

    Article  CAS  Google Scholar 

  21. B. Soltabayev, M.A. Yıldırım, A. Ateş, S. Acar, The effect of indium doping concentration on structural, morphological and gas sensing properties of IZO thin films deposited SILAR method. Mater. Sci. Semicond. Process. 101, 28–36 (2019). https://doi.org/10.1016/j.mssp.2019.05.026

    Article  CAS  Google Scholar 

  22. H. Yuan, S.A.A.A. Aljneibi, J. Yuan, Y. Wang, H. Liu, J. Fang, C. Tang, X. Yan, H. Cai, Y. Gu et al., ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. (2019). https://doi.org/10.1002/adma.201807161

    Article  PubMed  Google Scholar 

  23. M. Sik Choi, M. Young Kim, A. Mirzaei, H.S. Kim, S.I. Kim, S.H. Baek, D. Won Chun, C. Jin, K. Hyoung Lee, Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets. Appl. Surf. Sci. (2021). https://doi.org/10.1016/j.apsusc.2021.150910

    Article  Google Scholar 

  24. P. Cheng, L. Lv, Y. Wang, B. Zhang, Y. Zhang, Y. Zhang, Z. Lei, L. Xu, SnO2/ZnSnO3 double-shelled hollow microspheres based high-performance acetone gas sensor. Sens. Actuators B: Chem. (2021). https://doi.org/10.1016/j.snb.2020.129212

    Article  PubMed  Google Scholar 

  25. M. Shkir, Development of highly sensitive Al, Ga, and In-doped ZnO films by the drop casting method for NH3 gas sensing. New J. Chem. 47(10), 4880–4887 (2023). https://doi.org/10.1039/d2nj05323c

    Article  CAS  Google Scholar 

  26. J. Qi, H. Zhang, S. Lu, X. Li, M. Xu, Y. Zhang, High performance indium-doped ZnO gas sensor. J. Nanomater. 2015, 1–6 (2015). https://doi.org/10.1155/2015/954747

    Article  CAS  Google Scholar 

  27. J. Xu, J. Han, Y. Zhang, Y.A. Sun, B. Xie, Studies on alcohol sensing mechanism of ZnO based gas sensors. Sens. Actuators B: Chem. 132(1), 334–339 (2008). https://doi.org/10.1016/j.snb.2008.01.062

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, China (No. 61974057, 50272026), Applied Research and Development Project of Gansu Academy of Sciences, China (No. 2018JK-02) and Technological Project of Chengguan District of Lanzhou, China (No. 2019RCCX0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairong Li.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2028 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, M., Li, H., Huang, D. et al. ZIF-8-derived ZnO doped with In for high-performance ethanol gas sensor. J Mater Sci: Mater Electron 35, 342 (2024). https://doi.org/10.1007/s10854-024-12062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12062-0

Navigation