Skip to main content
Log in

Temperature-dependent Raman and dielectric studies of Sm and Zr Co-doped BaTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sm and Zr co-doped BaTiO3 ceramics were investigated for their microstructure and dielectric characteristics. (Ba1 − xSmx)(Ti0.75Zr0.25)O3−δ (BSTZO) with x = 0.02, 0.04, and 0.06 mol% of ceramic compounds were prepared by solid-state reaction route. The primary objective is to obtain higher dielectric constant with lower dielectric loss in the proposed material composition. The prepared BSTZO and sintered compounds were found to be highly crystalline with a tetragonal perovskite structure. A typical X-ray photoelectron spectroscopy spectra of BSTZO sample with Sm = 0.02 mol% calcined at 1273 K revealed the elemental composition, binding energy, and chemical state of the elements. Oxygen vacancy concentrations evaluated by in situ high-temperature Raman spectroscopy in the temperature range of 301–773 K were found to decrease with increasing Sm3+ concentration and the substitution of the lowest concentration of Sm3+ (0.02 mol%) in the A site of the BSTZO was found to be higher (\({V}_{O}^{\cdot \cdot}\)= 1.98 × 1021 cm−3, at 773 K) than that of the other compositions. The measured maximum dielectric constant was found to be 1808, 2010, and 1736 for BSTZO pellet with x= 0.02, 0.04, and 0.06 mol%, respectively in the temperature range of 323–773 K and at frequency of 20 MHz. Among these compounds, (Ba0.96Sm0.04) (Ti0.75Zr0.25)O3−δ has shown high dielectric constant and low loss tangent compared to other compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. F. John, S. Solomon, Dielectric and optical properties of Ln0.8Lu0.2TiNbO6 (Ln= Ce, Pr, Nd &Sm) ceramics. Phys. Lett. A 384(28), 126731 (2020)

    Article  CAS  Google Scholar 

  2. M.V. Zdorovets, A.L. Kozlovskiy, Study of the effect of La3+ doping on the properties of ceramics based on BaTiOx. Vacuum 168, 108838 (2019)

    Article  CAS  ADS  Google Scholar 

  3. A. Yamaji, Y. Enomoto, Preparation, characterization, and properties of Dy-Doped Small‐Grained BaTiO3 ceramics. J. Am. Ceram. Soc. 60, 97–101 (1977)

    Article  CAS  Google Scholar 

  4. G. Arlt, D.Hennings, and, G.D. With, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619–1625 (1985)

    Article  CAS  ADS  Google Scholar 

  5. W. Cai, Q. Zhang, C.Z.R. Gao, S. Zhang, Z. Li, R. Xu, G. Chen, X. Deng, Synergistic effect of grain size and phase boundary on energy storage performance and electric properties of BCZT ceramics. J. Mater. Sci. 31, 9167–9175 (2020)

    CAS  Google Scholar 

  6. K.J. Choi, M. Biegalski, Y. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. Chen, Enhancement of ferroelectricity in strained BaTiO3 thin films. Science. 306, 1005–1009 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. J.E. Spanier, A.M. Kolpak, J.J. Urban, I. Grinberg, L. Ouyang, W.S. .Yun, A.M. Rappe, Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett. 6, 735–739 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  8. S. Lee, Z.K. Liu, M.H. Kim, Influence of nonstoichiometry on ferroelectric phase transition in BaTiO3. J. Appl. Phys. 101, 054119 (2007)

    Article  ADS  Google Scholar 

  9. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 9(19), 16404–16416 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. R. Xu, S. Zhang, F. Wang, Q. Zhang, Z. Li, Z. Wang, R. Gao, W.Cai and, C. Fu, The study of microstructure, dielectric and multiferroic properties of (1-x)Co0.8Cu0.2Fe2O4-xBa0.6Sr0.4TiO3 composites. J. Electron. Mater. 48, 386–400 (2019)

    Article  CAS  ADS  Google Scholar 

  11. M. Frey, D. Payne, Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54, 3158 (1996)

    Article  CAS  ADS  Google Scholar 

  12. C.P. O.Thakur, D.K. Agrawal, Dielectric behavior of Ba0.95Sr0.05TiO3 ceramics sintered by microwave. Mater. Sci. Eng. 96, 221–225 (2002)

    Article  Google Scholar 

  13. Y. Shi, H. Liu, H. Hao, M. Cao, Z. Yao, Z. Song, G. Li, W. Tang, J. Xie, Investigation of dielectric properties for Ba0.4Sr0.6TiO3 ceramics with various grain sizes. Ferroelectrics 487, 109–121 (2015)

    Article  CAS  ADS  Google Scholar 

  14. G. Chen, X. Peng, C. Fu, W. Cai, R. Gao, P.F.X. Yi, H. Yang, Effects of sintering method and BiFeO3 dopant on the dielectric and ferroelectric properties of BaTiO3-BiYbO3 based solid solution ceramics. Ceram. Int. 44(14), 16880–16889 (2018)

    Article  CAS  Google Scholar 

  15. Q. Zhang, W. Cai, C. Zhou, R. Xu, S. Zhang, Z. Li, Gao and C.Fu, Electric fatigue of BCZT ceramics sintered in different atmospheres. Appl. Phys. A 125, 1–9 (2019)

    Article  Google Scholar 

  16. D. Sandi, A. Supriyanto, Y. Iriani, The effects of sintering temperature on dielectric constant of Barium Titanate (BaTiO3), in IOP Con., vol. 107, (IOP Publishing, Bristol, 2016), p.012069

    Google Scholar 

  17. M.J. Iqbal, N. Yaqub, B.Sepiol and, B. Ismail, A study of the influence of crystallite size on the electrical and magnetic properties of CuFe2O4. Mater. Res. Bull. 46(11), 1837–1842 (2011)

    Article  CAS  Google Scholar 

  18. M. Mostafa, Enhanced dielectric properties of BaTiO3 ceramics with cerium doping, manganese doping and Ce-Mn co-doping. Sci. Eng. Compos. Mater. 26(1), 62–69 (2019)

    Article  CAS  Google Scholar 

  19. S. Yadav, M. Chandra, R. Rawat, A.K. Sinha, and K. Singh, Structural correlations in the enhancement of ferroelectric property of Sr doped BaTiO3. J. Phys.: Condens. Matter. 32(44), 445402 (2020)

    CAS  PubMed  Google Scholar 

  20. R. Mahani, O. El-Sayed, S.K. El-Mahy, I.K. Battisha, Structure and Dielectric studies of Sn4+/Er3+ co-doped BaTiO3 Nano-Powders. Acta Phys. Pol. A 137(3), 410–416 (2020)

    Article  CAS  ADS  Google Scholar 

  21. C. Li, R. Xu, R. Gao, Z. Wang, G. Chen, X. Deng, W. Cai, C.Fu and, Q. Li, Structure, dielectric, piezoelectric, antiferroelectric and magnetic properties of CoFe2O4-PbZr0.52Ti0.48O3 composite ceramics. Mater. Chem. Phys. 249, 123144 (2020)

    Article  CAS  Google Scholar 

  22. M. Afqir, M. Elaatmani, A. Zegzouti, Sol-gel synthesis, structural and dielectric properties of Y-doped BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 30(6), 5495–5502 (2019)

    CAS  Google Scholar 

  23. A. Manohar, V. Vijayakanth, S.P. Vattikuti, P. Manivasagan, E.S. Jang, K.Chintagumpala and, K.H. Kim, Ca-doped MgFe2O4 nanoparticles for magnetic hyperthermia and their cytotoxicity in normal and cancer cell lines. ACS Appl. Nano Mater. 5(4), 5847–5856 (2022)

    Article  CAS  Google Scholar 

  24. A. Manohar, V. Vijayakanth, P. Manivasagan, E.S. Jang, B. Hari, M.Gu and, K.H. Kim, Investigation on the physico-chemical properties, hyperthermia and cytotoxicity study of magnesium doped manganese ferrite nanoparticles. Mater. Chem. Phys. 287, 126295 (2022)

    Article  CAS  Google Scholar 

  25. A. Manohar, V. Vijayakanth, S.P.Vattikuti and, K.H. Kim, Structural and electrochemical properties of mixed calcium-zinc spinel ferrites nanoparticles. Ceram. Int. 49(3), 4365–4371 (2023)

    Article  CAS  Google Scholar 

  26. P. Liu, Z. Yao, J. Zhou, Z.Yang and, L.B. Kong, Small magnetic co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 4(41), 9738–9749 (2016)

    Article  CAS  Google Scholar 

  27. A. Manohar, V. Vijayakanth, S.P.Vattikuti and, K.H. Kim, Structural, BET and EPR properties of mixed zinc-manganese spinel ferrites nanoparticles for energy storage applications. Ceram. Int. 49(12), 19717–19727 (2023)

    Article  CAS  Google Scholar 

  28. A. Manohar, V. Vijayakanth, S.P.Vattikuti and, K.H. Kim, Electrochemical energy storage and photoelectrochemical performance of Ni1-XZnXFe2O4 nanoparticles. Mater. Sci. Semiconduct. Process. 157, 107338 (2023)

    Article  CAS  Google Scholar 

  29. A. Kheyrdan, H. Abdizadeh, A.Shakeri, and, M.R. Golobostanfard, Structural, electrical, and optical properties of sol-gel-derived zirconium-doped barium titanate thin films on transparent conductive substrates. J. Solgel Sci. Technol. 86(1), 141–150 (2018)

    Article  CAS  Google Scholar 

  30. K. Hongo, S. Kurata, A. Jomphoak, M. Inada, Stabilization mechanism of the tetragonal structure in a hydrothermally synthesized BaTiO3 nanocrystal. Inorg. Chem. 57(9), 5413–5419 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. P.L.Z. Yao, V.M.H. Ng, J. Zhou, L.B. Kong, Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. Part A: Appl. Sci. Manufac. 115, 371–382 (2018)

    Article  Google Scholar 

  32. R.R. Negi, Structural, microstructural, dielectric and ferroelectric properties of BaTiO3-based ceramics. Process. Application Ceram. 13(2), 164–172 (2019)

    Article  CAS  Google Scholar 

  33. K. Madhan, R. Murugaraj, Investigation on Microstructural, Electrical and Optical properties of Nd-Doped BaCo 0.01 Ti 0.99 O 3 Perovskite. J. Electron. Mater. 49, 377–384 (2020)

    Article  CAS  ADS  Google Scholar 

  34. V. Paunovic, Influence of rare-earth additives (La, Sm and Dy) on the microstructure and dielectric properties of doped BaTiO3 ceramics. Sci. Sinter. 42(1), 69–79 (2010)

    Article  CAS  Google Scholar 

  35. R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, Enhancement of magnetoelectric properties of (1-x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. J. Alloys Compd. 795, 501–512 (2019)

    Article  CAS  Google Scholar 

  36. J. Q.Liu, D. Liu, Dense Sm and Mn co-doped BaTiO3 ceramics with high permittivity. Materials. 12(4), 678 (2019)

    Article  ADS  Google Scholar 

  37. P. Kumar, V. Kumar, Effect of co-substitution of Sm3+ and Fe3+ ions on structural and dielectric properties of BaTiO3 ceramics. J. Alloys Compd. 731, 760–765 (2018)

    Article  Google Scholar 

  38. K. Madhan, R. Murugaraj, Enrichment of optical, electrical, and magnetic properties of Li+, La3+ doped BaTiO 3 perovskite multifunctional ceramics. Appl. Phys. A 126, 1–12 (2020)

    Article  Google Scholar 

  39. W. X.Wang, Z. Cai, X.Y. Xiao, Enhanced dielectric and tunable properties of Ba-doped (Pb, La)(Zr, Sn, Ti) O3 antiferroelectric ceramics. J. Mater. Sci.: Mater. Electron. 31(19), 17013–17017 (2020)

    Google Scholar 

  40. R.H. Liang, X.L. Dong, Y. Chen, F.Cao, and, Y.L. Wang, Dielectric properties and tunability of ba(ZrxTi1-x)O3 ceramics under high DC electric field. Ceram. Int. 33(6), 957–961 (2007)

    Article  CAS  Google Scholar 

  41. C. Gemez-Yanez, E. Cruz-Aquino, J.J. Cruz-Rivera, R. Linares-Miranda, BaTiO3 devices doped with Zr using mechanical alloying. J. Alloys Compd. 434, 806–808 (2007)

    Article  Google Scholar 

  42. Y. Hao, Y. Li, Studies of ferroelectric and dielectric properties of samarium doped barium titanate sintered in pure nitrogen. Ferroelectrics. 407(1), 146–153 (2010)

    Article  ADS  Google Scholar 

  43. T.S.A. Raman, V.R. Nair, Effect of Ni and Co co-substitution on the structural and dielectric properties of barium titanate ceramics. J. Mater. Sci.: Mater. Electron. 31(23), 21747–21757 (2020)

    Google Scholar 

  44. M.H. Jin, E. Shin, S. Jin, H. Jo, K.M. Ok, Solvothermal synthesis of ferroelectric BaTiO3 nanoparticles and their application to dye-sensitized solar cells. J. Korean Phys. Soc. 73(5), 627–631 (2018)

    Article  CAS  ADS  Google Scholar 

  45. G.R. Gajula, K.N.C. Kumar, L.R. Buddiga, N. Vattikunta, High frequency studies on dielectric, impedance and Nyquist properties of BaTiO3-Li0.5Fe2.5O4 composite ceramics substituted with sm and nb for microwave device applications. J. Mater. Sci.: Mater. Electron. 30(4), 3889–3898 (2019)

    CAS  Google Scholar 

  46. H. Yang, W. Bao, Z. Lu, L. Li, H. Ji, Y. Huang, F. Xu, High-energy storage performance in BaTiO3‐based lead‐free multilayer ceramic capacitors. J. Mater. Res. 36(6), 1285–1294 (2021)

    Article  CAS  ADS  Google Scholar 

  47. I. A.Rajeshwari, N.L. Jeyakumar, B. Vigneshwaran, Dependance of lanthanum ions on structural, magnetic and electrical of manganese based spinel nanoferrites. Ceram. Int. 46(5), 6860–6870 (2020)

    Article  Google Scholar 

  48. L. J.Liu, J. Jacob, Z. Langley, H. Ta, Banys, X.Wei, and N.Cox, Microwave dielectric materials with defect-dipole clusters induced colossal permittivity and ultra-low loss. ACS Appl. Electron. Mater. 3(11), 5015–5022 (2021)

    Article  Google Scholar 

  49. J.A. Dawson, D.C. Sinclair, J.H. Harding, C.L. Freeman, A-site strain and displacement in Ba1–x Ca x TiO3 and Ba1–x Srx TiO3 and the consequences for the Curie temperature. Chem. Mater. 26(21), 6104–6112 (2014)

    Article  CAS  Google Scholar 

  50. Y. Huang, C. Zhao, J. Yin, X. Lv, Giant electrostrictive effect in lead-free barium titanate-based ceramics via A-site ion-pairs engineering. J. Mater. Chem. A 7(29), 17366–17375 (2019)

    Article  CAS  Google Scholar 

  51. H. UM.Pasha, O.P. Zheng, A. Thakur, D.C.S. Whittle, I.M. Reaney, In-situ Raman spectroscopy of A-site doped barium titanate. Appl. Phys. Lett. 91, 062908 (2007)

    Article  ADS  Google Scholar 

  52. E. Chavez, S. Fuentes, R.A. Zarate, L. Padilla-Campos, Structural analysis of nanocrystalline BaTiO3. J. Mol. Struct. 984, 131–136 (2010)

    Article  CAS  ADS  Google Scholar 

  53. L. J.Parsons, .Rimai, Raman spectrum of BaTiO3. Solid State Commun. 5, 423–427 (1967)

    Article  ADS  Google Scholar 

  54. H. Qiao, H. Sun, J. Li, H. Chen, C. Xing, J. Yang, H. Dong, J. Wang, X. Yin, Z.M. Qi, F. Shi, Structure, intrinsic properties and vibrational spectra of Pr (Mg1/2Sn1/2)O3 ceramic crystal. Sci. Rep. 7, 1–8 (2017)

    Article  Google Scholar 

  55. L. L.Li, T. S.Gao, H.Y. Zhou, D. Xu, Temperature-dependent optical phonon behaviour of a spinel Zn2TiO4 single crystal grown by the optical floating zone method in argon atmosphere. RSC Adv. 7, 35477–35481 (2017)

    Article  ADS  Google Scholar 

  56. S. Grigoriev, V. Fateev, Current status, research trends, and challenges in water electrolysis science and technology. Int. J. Hydrog. Energy. 45, 26036–26058 (2020)

    Article  CAS  Google Scholar 

  57. T. I.Kosacki, H.U.A. Suzuki, Raman Scattering and Lattice Defects in Nanocrystalline CeO2 Thin Films. Solid State Ionics. 149, 99–105 (2002)

    Article  Google Scholar 

  58. P. SA.Kumar, B.V. Kuppusami, Codoped Ceria Ce0.8M0.1Gd0.1O2–δ (M = Sm3+, Sr2+, Ca2+) and Codoped Ceria–Na2CO3 Nanocomposite Electrolytes for Solid Oxide Fuel Cells. ACS Appl. Nano Mater. 2, 6300–6311 (2019)

    Article  Google Scholar 

  59. M.T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Testino, P. Nanni, Z. Zhao, M. Nygren, C. Harnagea, D.Piazza, and C.Galassi, High dielectric constant and frozen macroscopic polarization in dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 73(6), 064114 (2006)

    Article  ADS  Google Scholar 

  60. M.Z.R. Liang, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6(31), 8528–8537 (2018)

    Article  ADS  Google Scholar 

  61. Y.-J. Wan, P.-L. Zhu, Y. Shu-Hui, W.-H. Yang, R. Sun, C.-P. Wong, Wei-sin Liao, Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites. Compos. Sci. Technol. 141, 48–55 (2017)

    Article  CAS  Google Scholar 

  62. R. L.Makhova, R.D. Ullrich, Surface potential of BaTiO single crystal near the Curie temperature. Phys. Rev. B 83, 115–407 (2011)

    Article  Google Scholar 

  63. L.G. Devi, Effect of surface Ag metallization on the photocatalytic properties of BaTiO3: surface plasmon effect and variation in the Schottky barrier height. Surf. Interfaces. 15, 205–215 (2019)

    Article  Google Scholar 

  64. I.C. Amaechi, G. Kolhatkar, A.H. Youssef, D. Rawach, S.Sun, and, A. Ruediger, B-site modified photoferroic Cr3+-doped barium titanate nanoparticles: microwaveassisted hydrothermal synthesis, photocatalytic and electrochemical properties. RSC Adv. 9, 20806 (2019)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. H. Nohira, W. Tsai, W. Besling, E. Young, J. Petry, T. Conard, W. Vandervorst, S.D. Gendt, J.Maes and M.Tuominen, Characterization of ALCVD-Al2O3 and ZrO2 layer using X-ray photoelectron spectroscopy. J. Non-cryst. Solids. 303(1), 83–87 (2002)

    Article  CAS  ADS  Google Scholar 

  66. C.A. .Randall, A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag. 26(3), 44–50 (2010)

    Article  Google Scholar 

  67. B. Vigneshwaran, P. Kuppusami, Study of low temperature-dependent structural, dielectric, and ferroelectric properties of BaxSr(1–x)TiO3 (x = 0.5, 0.6, 0.7) ceramics. J. Mater. Science-Materials Electron. 31, 10446–10459 (2020)

    Article  CAS  Google Scholar 

  68. M. Aghayan, A.K. Zak, M.Behdani, and, A.M. Hashim, Sol–gel combustion synthesis of Zr-doped BaTiO3nanopowders and ceramics: Dielectric and ferroelectric studies. Ceram. Int. 40(10), 16141–16146 (2014)

    Article  CAS  Google Scholar 

  69. Y. Wei, X. Wang, J. Zhu, Dielectric, ferroelectric, and piezoelectric properties of BiFeO3–BaTiO3 ceramics. J. Am. Ceram. Soc. 96(10), 3163–3168 (2013)

    Article  CAS  Google Scholar 

  70. Q. Hu, X. Wei, Abnormal phase transition and polarization mismatch phenomena in BaTiO3-based relaxor ferroelectrics. J. Adv. Dielectr. 9(05), 1930002 (2019)

    Article  CAS  ADS  Google Scholar 

  71. M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials (Oxford University press, Oxford, 2001)

    Book  Google Scholar 

  72. O.P. Thakur, C. Prakash, Dielectric properties of samarium substituted barium strontium titanate. Ph. Transit. 76(6), 567–574 (2003)

    Article  CAS  Google Scholar 

  73. M.J. Wang, H. Yang, Q.L. Zhang, Z.S. Lin, Z.S. Zhang, D. Yun, Microstructure and dielectric properties of BaTiO3 ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application. Mater. Res. Bull. 60, 485–491 (2014)

    Article  CAS  Google Scholar 

  74. P.Y. Xu.Ning, Ping, Wang, Zhuo, Large dielectric constant and M axwell–W agner effects in BaTiO3/Cu composites. J. Am. Ceram. Soc. 95(3), 999–1003 (2012)

    Article  Google Scholar 

  75. J. Q.Zhang, B. Zhai, X. Yao, Grain size effects on dielectric properties of barium strontium titanate composite ceramics. Mater. Res. Bull. 48(3), 973–977 (2013)

    Article  Google Scholar 

  76. E. Cockayne, Influence of oxygen vacancies on the dielectric properties of hafnia: first-principles calculations. Phys. Rev. B 75, 094103 (2007)

    Article  ADS  Google Scholar 

  77. A.S. Foster, F.L. .Gejo, Vacancy and interstitial defects in hafnia. Phys. Rev. B 65, 174117 (2002)

    Article  ADS  Google Scholar 

  78. R. X.Liu, J. Rao, J. Shi, Effect of oxygen vacancy and A-site-deficiency on the dielectric performance of BNT-BT-BST relaxors. J. Alloys Compd. 875, 159999 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Vikram Sarabhai Space Centre, Indian Space Research Organization, Thiruvananthapuram for the financial support vide sanction no: ISRO/RES/3/684/15–16. They also thank Chancellor, President, Vice Presidents and Vice Chancellor of Sathyabama Institute of Science and Technology, Chennai-600119 for providing infrastructure and facilities.

Funding

Vikram Sarabhai Space Centre (VSSC), Indian Space Research Organization (ISRO), Thiruvananthapuram for the financial support vide sanction no: ISRO/RES/3/684/15–16.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, Preparation, investigation, analysis and writing original draft—B.Vigneshwaran. Resources and formal analysis—Madhan kuppusamy.  Writing, review and editing—S. Ajithkumar.  Conceptualization, funding acquisition, supervision of experiments, and revision of the manuscript—P. Kuppusami.

Corresponding author

Correspondence to P. Kuppusami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

The final version of the manuscript was reviewed and approved by all authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneshwaran, B., Kuppusami, P., Ajithkumar, S. et al. Temperature-dependent Raman and dielectric studies of Sm and Zr Co-doped BaTiO3 ceramics. J Mater Sci: Mater Electron 35, 353 (2024). https://doi.org/10.1007/s10854-024-12060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12060-2

Navigation