Skip to main content
Log in

Luminescence saturation studies of YAG: Ce phosphor ceramics for white laser diode lighting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As a new generation of solid-state lighting devices, phosphor-converted white laser diodes are required to be able to reach high-power. For white laser diode lighting, high-power laser excitation is necessary to obtain high luminous flux. Here, the change of luminous flux of YAG: Ce phosphor ceramics excited by the high-power blue laser is systematically investigated by regulating the blue laser power, irradiation distance, and irradiation time. The results indicate that the luminous flux is basically unchanged when the change in the irradiation distance is less than 10 cm. Moreover, when the blue laser power changes from 3.01 to 19.21 W, the luminous flux is increased by 285%. The saturation thresholds of YAG: Ce phosphor ceramics exceed 27 W. The results show that the collimated laser beam excision can significantly reduce the effect of spot area on the luminous flux, and significantly enhance the saturation laser power of the YAG: Ce phosphor ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request. No datasets were generated or analysed during the current study.

References

  1. E.F. Schubert, J.K. Kim, Science. 308, 1274–1278 (2005). https://doi.org/10.1126/science.1108712

    Article  ADS  CAS  PubMed  Google Scholar 

  2. N.C. George, K.A. Denault, R. Seshadri, Annu. Rev. Mater. Sci. 43, 481–501 (2013). https://doi.org/10.1146/annurev-matsci-073012-125702

    Article  ADS  CAS  Google Scholar 

  3. S. Li, L. Wang, N. Hirosaki, R.-J. Xie, Laser Photonics Rev. 12, 1800173 (2018). https://doi.org/10.1002/lpor.201800173

    Article  ADS  CAS  Google Scholar 

  4. X.-L. Peng, S.-X. Li, Z.-H. Liu, X.-M. Yao, R.-J. Xie, Z.-R. Huang, X.-J. Liu, J. Inorg. Mater. 36, 807–819 (2021). https://doi.org/10.15541/jim20200652

    Article  Google Scholar 

  5. J.J.W. Jr, J.Y. Tsao, D.S. Sizov, Laser Photonics Rev. 7, 963–993 (2013). https://doi.org/10.1002/lpor.201300048

    Article  ADS  CAS  Google Scholar 

  6. J. Li, W.-Y. Li, X. Liu, Q. Liu, Chin. J. Lumin. 42, 580–604 (2021). https://doi.org/10.37188/CJL.20200402

    Article  CAS  Google Scholar 

  7. J. Piprek, Phys. A Status Solidi 207, 2217–2225 (2010). https://doi.org/10.1002/pssa.201026149

    Article  ADS  CAS  Google Scholar 

  8. J. Cho, E.F. Schubert, J.K. Kim, Laser Photonics Rev. 7, 408–421 (2013). https://doi.org/10.1002/lpor.201200025

    Article  ADS  CAS  Google Scholar 

  9. C. Basu, M. Meinhardt-Wollweber, B. Roth, Adv. Opt. Technol. 2, 313–321 (2013). https://doi.org/10.1515/aot-2013-0031

    Article  ADS  Google Scholar 

  10. K.A. Denault, M. Cantore, S. Nakamura, S.P. Denbaars, R. Seshadri, AIP Adv. 3, 072107 (2013). https://doi.org/10.1063/1.4813837

    Article  ADS  CAS  Google Scholar 

  11. Y.-Q. Zhang, J.-M. Liu, Y.-J. Zhang, H.-S. Yang, Y.-X. Yu, Q.-Y. He, X.-J. Liang, Y.-F. Liu, W.-D. Xiang, J. Rare Earths. 40, 717–724 (2022). https://doi.org/10.1016/j.jre.2021.03.006

    Article  CAS  Google Scholar 

  12. Q. Yao, P. Hu, P. Sun, M. Liu, R. Dong, K.-F. Chao, Y.-F. Liu, J. Jiang, H.-C. Jiang, Adv. Mater. 32, 1907888 (2020). https://doi.org/10.1002/adma.201907888

    Article  CAS  Google Scholar 

  13. C. Cozzan, G. Lheureux, N. O’Dea, E.E. Levin, J. Graser, T.D. Sparks, S. Nakamura, S.P. DenBaars, C. Weisbuch, R. Seshadri, Stable, ACS Appl. Mater. Interfaces. 10, 5673–5681 (2018). https://doi.org/10.1021/acsami.8b00074

    Article  CAS  PubMed  Google Scholar 

  14. L.-H. Wang, J.-D. Zhang, L. Xu, S.-Y. Bao, Y. Wang, J. Liu, X.-J. Liang, W.-D. Xiang, J. Mater. Sci. Technol. 134, 42–49 (2023). https://doi.org/10.1016/j.jmst.2022.06.025

    Article  CAS  Google Scholar 

  15. Y.-R. Xu, S.-X. Li, P. Zheng, L. Wang, S.-H. You, T. Takeda, N. Hirosaki, R.-J. Xie, J. Mater. Chem. C 7, 11449–11456 (2019). https://doi.org/10.1039/C9TC03919H

    Article  CAS  Google Scholar 

  16. Q. Zhang, R.-L. Zheng, J.-Y. Ding, P. Cui, Z.-Y. Wang, P. Lv, W. Wei, J. Am. Ceram. Soc. 104, 3260–3268 (2021). https://doi.org/10.1111/jace.17672

    Article  CAS  Google Scholar 

  17. J. Xu, A. Thorseth, C. Xu, A. Krasnoshchoka, M. Rosendal, C. Dam-Hansen, B.-L. Du, Y.-X. Gong, O.B. Jensen, J. Lumin. 212, 279–285 (2019). https://doi.org/10.1016/j.jlumin.2019.04.027

    Article  CAS  Google Scholar 

  18. C. Zhao, S.-Y. Bao, Q.-Y. Wen, L. Xu, L.-H. Wang, X.-D. Wang, X.-J. Sun, X.-J. Liang, L. Zhang, W.-D. Xiang, Ceram. Int. 49, 18638–18644 (2023). https://doi.org/10.1016/j.ceramint.2023.02.240

    Article  CAS  Google Scholar 

  19. J. Xu, L.-J. Wang, W. Gu, Z. Jiang, X.-R. Chen, B.-F. Hu, B.-L. Du, H.-P. Ji, C. Dam-Hansen, O.B. Jensen, J. Eur. Ceram. Soc. 42, 608–615 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.10.035

    Article  CAS  Google Scholar 

  20. M.-H. Zhou, J. Sun, B. Zhang, Y.-J. Hua, F.-F. Huang, H.-P. Ma, R.-G. Ye, S.-Q. Xu, J. Eur. Ceram. Soc. 43, 3563–3571 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.01.055

    Article  CAS  Google Scholar 

  21. L.-L. Hei, S.-X. Li, X. Cheng, R.-J. Xie, Chin. J. Lumin. 42, 1646–1652 (2021). https://doi.org/10.37188/cjl.20210132

    Article  CAS  Google Scholar 

  22. L. Wang, R.-J. Xie, T. Suehiro, T. Takeda, N. Hirosaki, Chem. Rev. 118, 1951–2009 (2018). https://doi.org/10.1021/acs.chemrev.7b00284

    Article  CAS  PubMed  Google Scholar 

  23. H.Y. Ryu, D.H. Kim, J. Opt. Soc. Korea. 14, 415–419 (2010). https://doi.org/10.3807/JOSK.2010.14.4.415

    Article  CAS  Google Scholar 

  24. C.-C. Yang, X.-Y. Zhang, J. Kang, C. Wei, P.-F. Sang, S.-H. Lin, B.-H. Sun, J.-T. Fan, B.-X. Jiang, Y. Li, X.-R. Chen, J. Xu, H. Chen, L. Zhang, J. Mater. Sci. Technol. 166, 1–20 (2023). https://doi.org/10.1016/j.jmst.2023.04.038

    Article  Google Scholar 

Download references

Funding

This work was financially supported from the National Key Research and Development Program of China (Grant No. 2021YFB3501700), Shanghai Science and Technology Committee (STCSM) Science and Technology Innovation Program (Grant Nos. 22N21900400, 23N21900100), National Natural Science Foundation of China (Grant No. 12104311), Science and Technology Talent Development Fund for Young and Middle-aged Teachers of Shanghai Institute of Technology (Grant No. ZQ2022-3), Shanghai Chenguang Program (Grant No. 22CGA74).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XL, YL, LW, JK and JZ. The first draft of the manuscript was written by XL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yang Li.

Ethics declarations

Conflict of interest

The authors declare they have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Y., Wang, L. et al. Luminescence saturation studies of YAG: Ce phosphor ceramics for white laser diode lighting. J Mater Sci: Mater Electron 35, 299 (2024). https://doi.org/10.1007/s10854-024-12059-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12059-9

Navigation