Skip to main content
Log in

One-step synthesis of molecularly imprinted fluorescent sensors for highly selective detection of nicotinamide mononucleotide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A one-step approach was employed to synthesize fluorescent molecularly imprinted polymers (MIP@QDs) using CdSe quantum dots modified with sulfhydryl groups as the fluorescent core. Nicotinamide mononucleotide (NMN) was utilized as the template, methacrylic acid served as the functional monomer, and N,N′-methylenebisacrylamide functioned as the crosslinker for precipitation polymerization. Fluorescence quenching of the MIP@QDs enabled the quantitative detection of NMN. Within the concentration range of 0–100 µg·mL−1, the fluorescence intensity of the MIP@QDs decreased with increasing NMN concentration, with a detection limit of 0.0692 µg·mL−1. The MIP@QDs displayed superior selectivity for NMN compared with its structural analogues. Furthermore, application of the MIP@QDs to actual broccoli samples resulted in an NMN recovery rate ranging from 93.25 to 96.20%, with a relative standard deviation of 3.65–4.55%. This study provides a method for the facile preparation of fluorescent sensors based on precipitation polymerization, enabling rapid identification and quantification of NMN in complex matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. E. Verdin, Science. 350, 1208–1213 (2015). https://doi.org/10.1126/science.aac4854

    Article  ADS  CAS  PubMed  Google Scholar 

  2. R.P. Goodman, A.L. Markhard, H. Shah, R. Sharma, O.S. Skinner, C.B. Clish, A. Deik, A. Patgiri, Y.-H.H. Hsu, R. Masia, Nature. 583, 122–126 (2020). https://doi.org/10.1038/s41586-020-2337-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. E.F. Fang, S. Lautrup, Y. Hou, T.G. Demarest, D.L. Croteau, M.P. Mattson, V.A. Bohr, Trends Mol. Med. 23, 899–916 (2017). https://doi.org/10.1016/j.molmed.2017.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. Yoshino, J.A. Baur, S.-I. Imai, Cell. Metab. 27, 513–528 (2018). https://doi.org/10.1016/j.cmet.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  5. C. Ramanathan, T. Lackie, D.H. Williams, P.S. Simone, Y. Zhang, R.J. Bloomer, Nutrients. 14, 300 (2022). https://doi.org/10.3390/nu14020300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. B. Birdsall, N.J.M. Birdsall, J. Feeney, J. Thornton, J. Am. Chem. Soc. 97, 2845–2850 (1975). https://doi.org/10.1021/ja00843a039

    Article  CAS  PubMed  Google Scholar 

  7. A. Tran, R. Yokose, Y. Cen, Org. Biomol. Chem. 16, 3662–3671 (2018). https://doi.org/10.1039/c8ob00552d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. U. Simone, M. Massimo, Z. Federica, A. Adolfo, M. Francesca, O. Giuseppe, R. Silverio, R. Nadia, Food Chem. 221, 161–168 (2017). https://doi.org/10.1016/j.foodchem.2016.10.032

    Article  CAS  Google Scholar 

  9. S.L. Zheng, D.S. Wang, X. Dong, Y.F. Guan, Q. Qi, W.J. Hu, C. Hong, C. Zhang, C.Y. Miao, Curr. Pharm. Biotechnol. 24, 169–175 (2023). https://doi.org/10.2174/1389201023666220518113219

    Article  CAS  Google Scholar 

  10. X. Zhang, S. Yang, R. Jiang, L. Sun, S. Pang, A. Luo, Sens. Actuators B 254, 1078–1086 (2018). https://doi.org/10.1016/j.snb.2017.07.205

    Article  CAS  Google Scholar 

  11. L. Gao, W.J. Han, Y.S. Yan, X.Y. Li, C.X. Li, B. Hu, Anal. Methods. 8, 2434–2440 (2016). https://doi.org/10.1039/c5ay02721g

    Article  CAS  Google Scholar 

  12. M.P. Shirani, B. Rezaei, A.A. Ensafi, M. Ramezani, Food Chem. 339, 127920 (2020). https://doi.org/10.1016/j.foodchem.2020.127920

    Article  CAS  PubMed  Google Scholar 

  13. R.K. Sajwan, P. Sharma, G. Lakshmi, P.R. Solanki, Mater. Lett. 305, 130794 (2021). https://doi.org/10.1016/j.matlet.2021.130794

    Article  CAS  Google Scholar 

  14. Q. Li, T. Kamra, L. Ye, Chem. Commun. 52, 12237–12240 (2016). https://doi.org/10.1039/c6cc06628c

    Article  CAS  Google Scholar 

  15. Y.M. Shao, P. Wang, R. Zheng, Z.Z. Zhao, J. An, C.F. Hao, M.Y. Kang, Acta. 190, 161 (2023). https://doi.org/10.1007/s00604-023-05745-8

    Article  CAS  Google Scholar 

  16. X.Y. Wang, S.M. Yu, W. Liu, L.W. Fu, Y.Q. Wang, J.H. Li, L.X. Chen, ACS Sens. 3, 378–385 (2018). https://doi.org/10.1021/acssensors.7b00804

    Article  CAS  PubMed  Google Scholar 

  17. C. Wu, R. Cheng, J. Wang, Y. Wang, X. Jing, R. Chen, S.L.Y. Yan, J. Sep. Sci. 41, 3782–3790 (2018). https://doi.org/10.1002/jssc.201800418

    Article  CAS  PubMed  Google Scholar 

  18. Y. Wang, J. Wang, R. Cheng, L. Sun, X. Dai, Y. Yan, J. Sep. Sci. 41, 1880–1887 (2018). https://doi.org/10.1002/jssc.201701142

    Article  CAS  PubMed  Google Scholar 

  19. X. Wang, P. Sheng, L. Zhou, X. Tong, L. Shi, Q. Cai, Biosens. Bioelectron. 60, 52–56 (2014). https://doi.org/10.1016/j.bios.2014.03.056

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Z. Zhang, J. Li, X. Wang, D. Shen, L. Chen, ACS Appl. Mater. Interfaces. 7, 9118–9127 (2015). https://doi.org/10.1021/acsami.5b00908

    Article  CAS  PubMed  Google Scholar 

  21. A.S.D. Nascimento, P.E.C. Filho, A. Fontes, B.S. Santos, F.R.D. Carvalho, L. Stragevitch, E.S. Leite, Fuel 239, 1055–1060 (2019). https://doi.org/10.1016/j.fuel.2018.11.043

    Article  CAS  Google Scholar 

  22. C. Li, G. Hu, X. Hao, C. Li, T. Sakurai, J. Mater. Sci. : Mater. Electron. 32, 19083–19094 (2021). https://doi.org/10.1007/s10854-021-06425-0

    Article  CAS  Google Scholar 

  23. M. Davoodi, F. Davar, S. Mandani, B. Rezaei, A.E. Shalan, Ind. Eng. Chem. Res. 60, 12328–12342 (2021). https://doi.org/10.1021/acs.iecr.1c02124

    Article  CAS  Google Scholar 

  24. R.R. Zhang, X.J. Li, A.L. Sun, S.Q. Song, X.Z. Shi, Food Control. 132, 108438–108438 (2022). https://doi.org/10.1016/j.foodcont.2021.108438

    Article  CAS  Google Scholar 

  25. M. Zhang, N. Li, L. Xie, L. Hao, H.T. Xiong, Y.C. Wu, Shipin Yu Fajiao Gongye 48, 6 (2022). https://doi.org/10.13995/j.cnki.11-1802/ts.028707

    Article  CAS  Google Scholar 

  26. Y. Hu, X. Li, J. Liu, M. Wu, M. Li, X. Zang, Anal. Methods. 10, 1039 (2018). https://doi.org/10.1039/c7ay02872e

    Article  CAS  Google Scholar 

  27. S.N. Jamble, K.P. Ghoderao, R.B. Kale, Mater. Res. Express. 4, 115029 (2017). https://doi.org/10.1088/2053-1591/aa9971

    Article  ADS  CAS  Google Scholar 

  28. K. Atul, C. Pratima, Mater. Lett. 330, 133375 (2023). https://doi.org/10.1016/j.matlet.2022.133375

    Article  CAS  Google Scholar 

  29. T. Ahamad, M.A.M. Khan, S. Kumar, M. Ahamed, S. Mohammed, A.N. Alhazaa, Appl. Phys. B 122, 179 (2016). https://doi.org/10.1007/s00340-016-6455-3

    Article  ADS  CAS  Google Scholar 

  30. N.R. Yogamalar, A.C. Bose, Appl. Phys. A 103, 33–42 (2011). https://doi.org/10.1007/s00339-011-6304-5

    Article  ADS  CAS  Google Scholar 

  31. J. Zhang, H. Wang, L. Xu, Z. Xu, Anal. Methods. 13, 133–140 (2021). https://doi.org/10.1039/d0ay01822h

    Article  CAS  PubMed  Google Scholar 

  32. L. Zhang, L. Chen, ACS Appl. Mater. Interfaces. 8, 16248–16256 (2016). https://doi.org/10.1021/acsami.6b04381

    Article  CAS  PubMed  Google Scholar 

  33. J. Zheng, K. Cheng, Y. Wu, P. Yu, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03497-2

    Article  Google Scholar 

  34. S. Singh, V. Kaur, N. Kumar, M. Garg, S.K. Pandey, V.K. Meena, Sens. Actuators B Chem. 273, 505–510 (2018). https://doi.org/10.1016/j.snb.2018.06.063

    Article  CAS  Google Scholar 

  35. M.V. Bharthi, N. Roy, P. Moharana, K. Ghosh, P. Paira, New. J. Chem. 44, 16891–16899 (2020). https://doi.org/10.1039/D0NJ03075A

    Article  Google Scholar 

  36. X. Lv, P. Gao, RSC Adv. 10, 17906–17913 (2020). https://doi.org/10.1039/D0RA02834G

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Amjadi, R. Jalili, Biosens. Bioelectron. 96, 121–126 (2017). https://doi.org/10.1016/j.bios.2017.04.045

    Article  CAS  PubMed  Google Scholar 

  38. S. Xu, H. Lu, J. Li, X. Song, A. Wang, L. Chen, S. Han, ACS Appl. Mater. Interfaces. 5, 8146–8154 (2013). https://doi.org/10.1021/am4022076

    Article  CAS  PubMed  Google Scholar 

  39. C.X. Meng, Z.Y. Guo, C. Li, J.J. Zhu, W.H. Feng, L.M. Chen, Y.H. Liang, H.M. Gao, L.H. Yan, X.Q. Liu, J. Chin. Pharm. Sci. 56, 135–139 (2021). http://qikan.cqvip.com/Qikan/Article/Detail?id=7103957938

    ADS  Google Scholar 

  40. T. Zhao, H.M. Zhao, M.J. Song, W. Du, L.M. Wu, F.F. Fan, X.F. Xue, Shipin Yu Fajiao Gongye. 008, 48 (2022). https://doi.org/10.13995/j.cnki.11-1802/ts.028113

    Article  Google Scholar 

  41. X.Q. Liu, H. Yang, J.Y. Zhao, C.X. Meng, C. Li, D. Zhang, L.M. Chen, Y. Yan, Z.Y. Guo, Z.M. Wang, H. Yi, Zhongguo Zhongyao Zazhi. 46, 4034–4039 (2021). https://doi.org/10.19540/j.cnki.cjcmm.20210507.303

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Key Research Projects of the acknowledgement Shaanxi Provincial Education Department (22JS002) and the Graduate Innovation Fund Project of Shaanxi University of Technology (SLGYCX2226).

Author information

Authors and Affiliations

Authors

Contributions

LX: methodology, investigation, data curation, writing—original draft, writing—review and editing. MZ: methodology, investigation, data curation. YW: conceptualization, methodology, writing—review and editing, formal analysis, project administration, funding acquisition. HX: Writing—review and editing. LH: conceptualization, methodology and investigation.

Corresponding author

Correspondence to Yingchun Wu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Zhang, M., Wu, Y. et al. One-step synthesis of molecularly imprinted fluorescent sensors for highly selective detection of nicotinamide mononucleotide. J Mater Sci: Mater Electron 35, 311 (2024). https://doi.org/10.1007/s10854-024-12058-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12058-w

Navigation