Skip to main content
Log in

Bond characteristics and microwave dielectric properties of temperature-stable (1-x)Mg2TiO4-xLi4/3Ti5/3O4 (0.15 ≤ x ≤ 0.9) spinel solid solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, spinel-structured (1-x)Mg2TiO4-xLi4/3Ti5/3O4 (0.15 ≤ x ≤ 0.9) ceramic samples were fabricated by a conventional solid-state method. The samples exhibited a disordered-to-ordered-to-disordered structural transition with an increase in the x value. The compositional dependence of microwave dielectric properties of the samples was discussed with respect to the chemical bond characteristics. The dielectric constant (εr) was proved to be affected by the molar volume molecular polarizability and average bond ionicity (Afi). The quality factor (Q × f) was mainly dependent on the defect (i.e., Ti3+ and oxygen vacancy) population in the samples. Moreover, the temperature coefficient of the resonance frequency (τf) was confirmed to be affected by the Ti–O bond energy. The optimal microwave dielectric properties (εr = 26.0, Q × f = 36,500 GHz, and τf = 2.4 ppm/ºC) were achieved at x = 0.75.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. I.S. Ghosh, A. Hilgers, T. Schlenker, R. Porath, Ceramic microwave antennas for mobile applications. J. Eur. Ceram. Soc. 21(15), 2621–2628 (2001)

    Article  CAS  Google Scholar 

  2. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2008)

    Article  CAS  Google Scholar 

  3. A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, D. Suvorov, High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4. J. Am. Ceram. Soc. 89(11), 3441–3445 (2006)

    Article  CAS  Google Scholar 

  4. C.-L. Huang, S.-S. Liu, Low-loss microwave dielectrics in the (Mg1−xZnx)2TiO4 ceramics. J. Am. Ceram. Soc. 91(10), 3428–3430 (2008)

    Article  CAS  Google Scholar 

  5. C.-L. Huang, J.-Y. Chen, Low-Loss Microwave Dielectric Ceramics Using (Mg1−xMnx)2TiO4 (x=0.02–0.1) Solid Solution. J. Am. Ceram. Soc. 92(3), 675–678 (2009)

    Article  CAS  Google Scholar 

  6. C.-L. Huang, J.-Y. Chen, High-Q Microwave Dielectrics in the (Mg1−xCox)2TiO4 Ceramics. J. Am. Ceram. Soc. 92(2), 379–383 (2009)

    Article  CAS  Google Scholar 

  7. C.L. Huang, C.E. Ho, Microwave dielectric properties of (Mg1−xNix)2TiO4 (x=0.02-0.1) ceramics: microwave dielectric properties. Int. J. Appl. Ceram. Technol. 7, E163–E169 (2010)

    Article  Google Scholar 

  8. S. Liu, H. Li, R. Xiang, P. Zhang, X. Chen, Q. Wen, H. Hu, Effect of substituting Al3+ for Ti4+ on the microwave dielectric performance of Mg2Ti1-xAl4/3xO4 (0.01≤x≤0.09) ceramics. Ceram. Int. 47(23), 33064–33069 (2021)

    Article  CAS  Google Scholar 

  9. R. Xiang, H. Li, P. Zhang, X. Chen, H. Hu, Q. Wen, S. Liu, Crystal structure and microwave dielectric properties of Mg2Ti1-xGa4/3xO4 (0.05≤x≤0.13) ceramics. Ceram. Int. 47(6), 8447–8452 (2021)

    Article  CAS  Google Scholar 

  10. H. Li, B. Tang, Y. Li, Z. Qing, H. Chen, S. Zhang, Relationships between Sn substitution for Ti and microwave dielectric properties of Mg2(Ti1−xSnx)O4 ceramics system. J. Mater. Sci. Mater. Electron. 26(1), 571–577 (2015)

    Article  CAS  Google Scholar 

  11. S.H. Kim, E.S. Kim, Intrinsic factors affecting the microwave dielectric properties of Mg2Ti1−x(Mg1/3Sb2/3)O4 ceramics. Ceram. Int. 42(13), 15035–15040 (2016)

    Article  CAS  Google Scholar 

  12. S.H. Kim, E.S. Kim, Structural characteristics and microwave dielectric properties of Mg2Ti1-x(Mg1/3B2/3)xO4 (B=Nb5+, Ta5+) ceramics. Int. J. Nanotechnol. 15, 578 (2018)

    Article  ADS  CAS  Google Scholar 

  13. X. Yang, Y. Lai, Y. Zeng, F. Yang, F. Huang, B. Li, F. Wang, C. Wu, H. Su, Spinel-type solid solution ceramic MgAl2O4-Mg2TiO4 with excellent microwave dielectric properties. J. Alloys Compd. 898, 162905 (2022)

    Article  CAS  Google Scholar 

  14. W. Lei, W.-Z. Lu, D. Liu, J.-H. Zhu, Phase evolution and microwave dielectric properties of (1–x)ZnAl2O4−xMg2TiO4 ceramics. J. Am. Ceram. Soc. 92(1), 105–109 (2009)

    Article  CAS  Google Scholar 

  15. Z. Cheng, L. Gan, X. Chu, D. Wang, Z. Qi, J. Jiang, T. Zhang, Investigation of the microwave dielectric properties of the Li4x/3Zn2−2xTi1+2x/3O4 system by P-V–L theory and vibration spectroscopy. Ceram. Int. 47(24), 34695–34703 (2021)

    Article  CAS  Google Scholar 

  16. L. Nong, X. Cao, C. Li, L. Liu, L. Fang, J. Khaliq, Influence of cation order on crystal structure and microwave dielectric properties in xLi4/3Ti5/3O4-(1–x)Mg2TiO4 (0.6≤x≤0.9) spinel solid solutions. J. Eur. Ceram. Soc. 41(15), 7683–7688 (2021)

    Article  CAS  Google Scholar 

  17. H. Li, R. Xiang, X. Chen, H. Hua, S. Yu, B. Tang, G. Chen, S. Zhang, Intrinsic dielectric behavior of Mg2TiO4 spinel ceramic. Ceram. Int. 46(4), 4235–4239 (2020)

    Article  CAS  Google Scholar 

  18. H. Li, P. Zhang, S. Yu, H. Yang, B. Tang, F. Li, S. Zhang, Structural dependence of microwave dielectric properties of spinel structured Mg2(Ti1-xSnx)O4 solid solutions: crystal structure refinement, Raman spectra study and complex chemical bond theory. Ceram. Int. 45(9), 11639–11647 (2019)

    Article  CAS  Google Scholar 

  19. D.C. Dube, R. Zurmuhlen, A. Bell, N. Setter, W. Wersing, Dielectric measurements on high-Q ceramics in the microwave region. J. Am. Ceram. Soc. 80(5), 1095–1100 (2005)

    Article  Google Scholar 

  20. S. Kumar, R. Kumar, B.H. Koo, H. Choi, D.U. Kim, C.G. Lee, Structural and electrical properties of Mg2TiO4. J. Ceram. Soc. Jpn. 117(1365), 689–692 (2009)

    Article  CAS  Google Scholar 

  21. C. Liu, H. Zhang, H. Su, T. Zhou, J. Li, X. Chen, W. Miao, L. Xie, L. Jia, Low temperature sintering BBSZ glass modified Li2MgTi3O8 microwave dielectric ceramics. J. Alloys Compd. 646, 1139–1142 (2015)

    Article  CAS  Google Scholar 

  22. N. Leonidova, R.F. Samigullina, V. Patrakeev, Structural aspects of lithium transfer in solid electrolytes Li2xZn2–3xTi1+xO4 (0.33≤x≤0.67). J. Struct. Chem. 45(2), 262–268 (2004)

    Article  Google Scholar 

  23. X. Chu, L. Gan, Z. Cheng, J. Jiang, J. Wang, T. Zhang, Investigation on the bond characteristics and microwave dielectric properties of rock salt-structured Li2Mg0.5nTiO3+0.5n (n=1–8) ceramics based on the complex chemical bond theory. Mater. Today. Commun. 36, 106675 (2023)

    Article  CAS  Google Scholar 

  24. F. Wu, D. Zhou, C. Du, D.-M. Xu, R.-T. Li, Z.-Q. Shi, M.A. Darwish, T. Zhou, H. Jantunen, Design and fabrication of a satellite communication dielectric resonator antenna with novel low loss and temperature-stabilized (Sm1–xCax) (Nb1–xMox)O4 (x=0.15–0.7) microwave ceramics. Chem. Mater. 35(1), 104–115 (2023)

    Article  CAS  Google Scholar 

  25. F.-F. Wu, D. Zhou, C. Du, D. Xu, R.-T. Li, L. Zhang, F. Qiao, Z.-Q. Shi, M.A. Darwish, T. Zhou, H. Jantunen, I.M. Reaney, Design and fabrication of a C-band dielectric resonator antenna with novel temperature-stable Ce(Nb1–xVx)NbO4 (x=0–0.4) microwave ceramics. ACS Appl. Mater. Interfaces 14(43), 48897–48906 (2022)

    Article  CAS  PubMed  Google Scholar 

  26. J.A. Van Vechten, Quantum dielectric theory of electronegativity in covalent systems. I. Electronic Dielectric Constant. Phys. Rev. 182(3), 891–905 (1969)

    Google Scholar 

  27. J.C. Phillips, Dielectric definition of electronegativity. Phys. Rev. Lett. 20(11), 550–553 (1968)

    Article  ADS  CAS  Google Scholar 

  28. B.F. Levine, Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 59(3), 1463–1486 (1973)

    Article  ADS  CAS  Google Scholar 

  29. H. Yang, S. Zhang, H. Yang, E. Li, Usage of P-V–L bond theory in studying the structural/property regulation of microwave dielectric ceramics: a review. Inorg. Chem. Front. 7(23), 4711–4753 (2020)

    Article  CAS  Google Scholar 

  30. S.S. Batsanov, Dielectric methods of studying the chemical bond and the concept of electronegativity. Russ. Chem. Rev. 51(7), 684–697 (1982)

    Article  ADS  Google Scholar 

  31. M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60(7), 392–412 (2015)

    Article  Google Scholar 

  32. S. Takahashi, H. Ogawa, A. Kan, Electronic states and cation distributions of MgAl2O4 and Mg0.4Al2.4O4 microwave dielectric ceramics. J. Eur. Ceram. Soc. 38(2), 593–598 (2018)

    Article  CAS  Google Scholar 

  33. X. Zhou, L. Liu, J. Sun, N. Zhang, H. Sun, H. Wu, W. Tao, Effects of (Mg1/3Sb2/3)4+ substitution on the structure and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics. J. Adv. Ceram. 10(4), 778–789 (2021)

    Article  CAS  Google Scholar 

  34. D. Liu, S. Zhang, Z. Wu, Lattice energy estimation for inorganic ionic crystals. Inorg. Chem. 42(7), 2465–2469 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. L. Li, Y. Li, J. Qiao, M. Du, Developing high-Q×f value MgNb2-xTaxO6(0≤x≤0.8) columbite ceramics and clarifying the impact mechanism of dielectric loss: crystal structure, Raman vibrations, microstructure, lattice defects, chemical bond characteristics, structural parameters, and microwave dielectric properties in-depth studies. J. Mater. Sci. Technol. 146, 186–199 (2023)

    Article  CAS  Google Scholar 

  36. Z. Xiong, X. Zhang, B. Tang, C. Yang, Z. Fang, S. Zhang, Characterization of structure and properties in CaO-Nd2O3-TiO2 microwave dielectric ceramic modified by Al2O3. Mater Charact 176, 111108 (2021)

    Article  CAS  Google Scholar 

  37. H. Borchert, Y. Borchert, V.V. Kaichev, I.P. Prosvirin, G.M. Alikina, A.I. Lukashevich, V.I. Zaikovskii, E.M. Moroz, E.A. Paukshtis, V.I. Bukhtiyarov, V.A. Sadykov, Nanostructured, Gd-doped ceria promoted by Pt or Pd: investigation of the electronic and surface structures and relations to chemical properties. J. Phys. Chem. B 109(43), 20077–20086 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. X. Chu, L. Gan, S. Ren, J. Wang, Z. Ma, J. Jiang, T. Zhang, Low-loss and temperature-stable (1–x)Li2TiO3–xLi3Mg2NbO6 microwave dielectric ceramics. Ceram. Int. 46(6), 8413–8419 (2020)

    Article  CAS  Google Scholar 

  39. E.M.C. Fortunato, L.M.N. Pereira, P.M.C. Barquinha, A.M. Botelho Do Rego, G. Gonçalves, A. Vilà, J.R. Morante, R.F.P. Martins, High mobility indium free amorphous oxide thin film transistors. Appl. Phys. Lett. 92(22), 222103 (2008)

    Article  ADS  Google Scholar 

  40. Z. Cheng, L. Gan, Y. Liu, J. Jiang, T. Zhang, Microwave dielectric properties, low-temperature sintering mechanism, and defects behaviour of temperature stable (1–x)Li2Zn3Ti4O12-xSr3(VO4)2 ceramics. Ceram. Int. 48(16), 22789–22798 (2022)

    Article  CAS  Google Scholar 

  41. P. Pyykkö, M. Atsumi, Molecular single-bond covalent radii for elements 1–118. Chemistry A European J. 15(1), 186–197 (2009)

    Article  Google Scholar 

  42. Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  43. P. Zhang, Y. Zhao, W. Haitao, Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr(Nb1−xAx)2O8 (A=Ta, Sb) ceramics. Dalton Trans. 44(38), 16684–16693 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11774083 and 51902093).

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 11774083 and 51902093).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BZ. The first draft of the manuscript was written by BZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lin Gan or Tianjin Zhang.

Ethics declarations

Competing interests

The authors declare that they have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 243 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Gan, L., Jiang, J. et al. Bond characteristics and microwave dielectric properties of temperature-stable (1-x)Mg2TiO4-xLi4/3Ti5/3O4 (0.15 ≤ x ≤ 0.9) spinel solid solutions. J Mater Sci: Mater Electron 35, 278 (2024). https://doi.org/10.1007/s10854-024-12056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12056-y

Navigation