Skip to main content
Log in

Precipitation-assisted, low-temperature-annealed TiO2 and its nanocomposites-based photoanode for DSSCs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Titanium Dioxide (TiO2) is a wide band-gap semiconducting material of prime importance for its use as a transporting layer in renewable energy generation. Despite its widespread applicability, search for newer alternatives have been emphasized to overcome the shortcomings of TiO2 such as high-temperature requirement for obtaining the photoactive anatase phase, low optical response in the visible range, and high recombination rates. Here in, we report the applicability of low-temperature preparation of TiO2 photoanodes and its composites using wet-chemical precipitation method for dye-sensitized solar cells (DSSC). To enhance the optical and electrical properties of TiO2 and to reduce the electron-hole recombination, tuning of band gap was done by preparing photoanode based on copper oxide (CuO) and nickel oxide (NiO)–TiO2 nanocomposite. The structural, morphological, and bond formation characterization of nanocomposites formed were carried out using XRD, SEM, and FTIR. From scanning tunneling spectroscopy, both the nanocomposites were found to have smaller band gaps and greater particle sizes than TiO2. Moreover, the reduction of the band gap and PL quenching in nanocomposites imply the formation of modified type-II structure facilitating charge transportation and reduce the recombination rates. From the J–V characteristics, we found that DSSCs using CuO–TiO2 as photoanode outperform the TiO2 and NiO-TiO2 photoanode-based DSSCs and depict a much more stable performance than NiO–TiO2 when measured against constant illumination over period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.B. Askari et al., Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite. Optik. 149, 447–454 (2017)

    Article  CAS  ADS  Google Scholar 

  2. A. Ayati et al., A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant. Chemosphere. 107, 163–174 (2014)

    Article  CAS  PubMed  ADS  Google Scholar 

  3. S.H. Othman et al., Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. Int. J. Photoenergy  (2014). https://doi.org/10.1155/2014/945930

    Article  Google Scholar 

  4. L. Wu et al., TiO2 nanoparticles modified with 2D MoSe2 for enhanced photocatalytic activity on hydrogen evolution. Int. J. Hydrog. Energy. 44(2), 720–728 (2019)

    Article  CAS  Google Scholar 

  5. D. Carlson, C. Wronski, Solar cells using discharge-produced amorphous silicon. J. Electron. Mater. 6, 95–106 (1977)

    Article  CAS  ADS  Google Scholar 

  6. L. Kazmerski, F. White, G. Morgan, Thin-film CuInSe2/CdS heterojunction solar cells. Appl. Phys. Lett. 29(4), 268–270 (1976)

    Article  CAS  ADS  Google Scholar 

  7. B. O’regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 353(6346), 737–740 (1991)

    Article  ADS  Google Scholar 

  8. N. Jamalullail et al., Enhancement of energy conversion efficiency for dye sensitized solar cell using zinc oxide photoanode. IOP Conf Ser: Mater. Sci. Eng. 374(1), 012048 (2018)

    Article  Google Scholar 

  9. O. Takeo et al., Fabrication and characterization of TiO2-based dye-sensitized solar cells. Prog. in Nat. Sci.: Mater. Int. 21(2), 122–126 (2011)

    Article  Google Scholar 

  10. B.N. DiMarco et al., Efficiency considerations for SnO2-based dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 12(21), 23923–23930 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. H. Wang, W. Wei, Y.H. Hu, Efficient ZnO-based counter electrodes for dye-sensitized solar cells. J. Mater. Chem. A 1(22), 6622–6628 (2013)

    Article  CAS  ADS  Google Scholar 

  12. M. Tripathi, P. Chawla, CeO 2-TiO 2 photoanode for solid state natural dye-sensitized solar cell. Ionics. 21, 541–546 (2015)

    Article  CAS  Google Scholar 

  13. A. Zhang et al., Vibration catalysis of eco-friendly Na0. 5K0. 5NbO3-based piezoelectric: an efficient phase boundary catalyst. Appl. Catal. B 279, 119353 (2020)

    Article  CAS  Google Scholar 

  14. M.S. Ahmad, A.K. Pandey, N. Abd, Rahim, Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. a review. Renew. Sustain. Energy Rev. 77, 89–108 (2017)

    Article  Google Scholar 

  15. R.S. Dubey, K.V. Krishnamurthy, S. Singh, Experimental studies of TiO2 nanoparticles synthesized by sol-gel and solvothermal routes for DSSCs application. Res. Phy. 14, 102390 (2019)

    Google Scholar 

  16. M. Barzegar et al., Phytoextract-mediated synthesis of magnesium oxide nanoparticles using Caccinia macranthera extract and examination of their photocatalytic and anticancer effects. Mater. Res. Bull. 169, 112514 (2024)

    Article  CAS  Google Scholar 

  17. H. Hafez et al., High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode. Nanatechnol. Sci. Appl. (2010). https://doi.org/10.2147/NSA.S11350

    Article  Google Scholar 

  18. B. Boro et al., Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew. Sustain. Energy Rev. 81, 2264–2270 (2018)

    Article  CAS  Google Scholar 

  19. F. Fazli et al., Dye-sensitized solar cell using pure anatase TiO2 annealed at different temperatures. Optik. 140, 1063–1068 (2017)

    Article  CAS  ADS  Google Scholar 

  20. M. Khan et al., Investigations the structural, optical and photovoltaic properties of La doped TiO2 photoanode based dye sensitized solar cells. Opt. Mater. 122, 111610 (2021)

    Article  CAS  Google Scholar 

  21. T.P. Chou, Q. Zhang, G. Cao, Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells. J. Phys. Chem. C 111(50), 18804–18811 (2007)

    Article  CAS  Google Scholar 

  22. J. Lin et al., High temperature crystallization of free-standing anatase TiO2 nanotube membranes for high efficiency dye‐sensitized solar cells. Adv. Funct. Mater. 23(47), 5952–5960 (2013)

    Article  CAS  Google Scholar 

  23. W.-Q. Wu et al., Hydrothermal fabrication of hierarchically anatase TiO2 nanowire arrays on FTO glass for dye-sensitized solar cells. Sci. Rep. 3(1), 1–7 (2013)

    Google Scholar 

  24. B.N. Cardoso et al., Tuning anatase-rutile phase transition temperature: TiO2/SiO2 nanoparticles applied in dye-sensitized solar cells. Int. J. Photoenergy (2019). https://doi.org/10.1155/2019/7183978

    Article  Google Scholar 

  25. M.K. Hossain et al., Annealing temperature effect on structural, morphological and optical parameters of mesoporous TiO2 film photoanode for dye-sensitized solar cell application. Mater. Sci. 35, 868–877 (2017)

    CAS  Google Scholar 

  26. D. Yoo et al., Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature. Appl. Surf. Sci. 253(8), 3888–3892 (2007)

    Article  CAS  ADS  Google Scholar 

  27. Z. Sabouri et al., Facile green synthesis of Ag-doped ZnO/CaO nanocomposites with Caccinia macranthera seed extract and assessment of their cytotoxicity, antibacterial, and photocatalytic activity. Bioprocess Biosyst. Eng. 45(11), 1799–1809 (2022)

    Article  CAS  PubMed  Google Scholar 

  28. R. Sahay et al., Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. J. Solid State Chem. 186, 261–267 (2012)

    Article  CAS  ADS  Google Scholar 

  29. L. D’Amario et al., Tuning of conductivity and density of states of NiO mesoporous films used in p-Type DSSCs. J. Phys. Chem. C 118(34), 19556–19564 (2014)

    Article  Google Scholar 

  30. M.H. Habibi et al., Fabrication, characterization of two nano-composite CuO–ZnO working electrodes for dye-sensitized solar cell. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 116, 374–380 (2013)

    Article  CAS  ADS  Google Scholar 

  31. Z. Wu et al., An ultrasound-assisted deposition of NiO nanoparticles on TiO 2 nanotube arrays for enhanced photocatalytic activity. J. Mater. Chem. A 2(22), 8223–8229 (2014)

    Article  CAS  Google Scholar 

  32. N.B. Chaure, A.K. Ray, R. Capan, Sol–gel derived nanocrystalline titania thin films on silicon. Semicond. Sci. Technol. 20(8), 788 (2005)

    Article  CAS  ADS  Google Scholar 

  33. R. Capan et al., Optical dispersion in spun nanocrystalline titania thin films. Semicond. Sci. Technol. 19(2), 198 (2004)

    Article  CAS  ADS  Google Scholar 

  34. J. Zhi et al., NiO-decorated mesoporous TiO 2 flowers for an improved photovoltaic dye sensitized solar cell. Phys. Chem. Chem. Phys. 17(7), 5103–5108 (2015)

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  35. N. Yao et al., Reduced interfacial recombination in dye-sensitized solar cells assisted with NiO: Eu3+, Tb3 + coated TiO2 film. Sci. Rep. 6(1), 31123 (2016)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  36. C.-H. Tsai, C.-M. Lin, Y.-C. Liu, Increasing the efficiency of dye-sensitized solar cells by adding nickel oxide nanoparticles to titanium dioxide working electrodes. Coatings. 10(2), 195 (2020)

    Article  CAS  Google Scholar 

  37. Z.D. Mahmoudabadi, E. Eslami, One-step synthesis of CuO/TiO2 nanocomposite by atmospheric microplasma electrochemistry–its application as photoanode in dye-sensitized solar cell. J. Alloys Compd. 793, 336–342 (2019)

    Article  CAS  Google Scholar 

  38. N. Liu et al., Water annealing and other low temperature treatments of anodic TiO2 nanotubes: a comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochim. Acta. 82, 98–102 (2012)

    Article  CAS  Google Scholar 

  39. P. Wani et al., Precipitation assisted-hydrothermally derived TiO2 nanostructures for DSSC application. AIP Conf. Proc. (2021). https://doi.org/10.1063/5.0043723

    Article  Google Scholar 

  40. J. Archana et al., Ultra-fast photocatalytic and dye-sensitized solar cell performances of mesoporous TiO2 nanospheres. Appl. Surf. Sci. 449, 729–735 (2018)

    Article  CAS  ADS  Google Scholar 

  41. R. Raghav, P. Aggarwal, S. Srivastava, Tailoring oxides of copper-Cu2O and CuO nanoparticles and evaluation of organic dyes degradation. AIP Conf. Proc. (2016). https://doi.org/10.1063/1.4945198

    Article  Google Scholar 

  42. N. Srivastava, P. Srivastava, Synthesis and characterization of (single-and poly-) crystalline NiO nanorods by a simple chemical route. Phys. E: Low-Dimens. Syst. Nanostruct. 42(9), 2225–2230 (2010)

    Article  CAS  ADS  Google Scholar 

  43. T. Rajaramanan et al., Cost effective solvothermal method to synthesize Zn-Doped TiO2 nanomaterials for photovoltaic and photocatalytic degradation applications. Catalysts. 11(6), 690 (2021)

    Article  CAS  Google Scholar 

  44. L. Chougala et al., A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells.  J. Nano Elect. Phy.  9(4), 04005–04011 (2017)

    Google Scholar 

  45. N.A.-S. Ridha, H.K. Egzar, N.M. Kamal, Synthesis and characterization of CuO nanoparticles and TiO2/CuO nanocomposite and using them as photocatalysts. AIP Conf. Proc. (2020). https://doi.org/10.1063/5.0029408

    Article  Google Scholar 

  46. R. Vinoth et al., TiO2–NiO p–n nanocomposite with enhanced sonophotocatalytic activity under diffused sunlight. Ultrason. Sonochem. 35, 655–663 (2017)

    Article  CAS  PubMed  Google Scholar 

  47. D.C. Halin et al., The effect of polyethylene glycol (PEG) on TiO2 thin films via sol-gel method. IOP Conf. Ser.: Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/743/1/012007

    Article  Google Scholar 

  48. S.C. Lee et al.,  Photocatalytic removal of 2, 4-dichlorophenoxyacetic acid herbicide on copper oxide/titanium dioxide prepared by co-precipitation method. IOP Conf. Ser.: Mater. Sci. Eng. 107(1), 012012 (2016)

    Article  Google Scholar 

  49. A. Dutta, S.K. Saha, A.J. Akhtar, In-situ synthesis of porous ZnO nanosphere/reduced graphene oxide (ZnO@ rGO) composite for structural, optical and electrochemical properties. Mater. Today: Proc. 66, 3253–3260 (2022)

    CAS  Google Scholar 

  50. N. Motwani, P.U. Londhe, N.B. Chaure, The influence of various concentrations of ammonia on titania properties as a photo-anode for dye-sensitized solar cell. J. Mater. Sci.: Mater. Electron. 31(22), 20513–20526 (2020)

    Google Scholar 

  51. Y. Ku, C.-N. Lin, W.-M. Hou, Characterization of coupled NiO/TiO2 photocatalyst for the photocatalytic reduction of cr (VI) in aqueous solution. J. Mol. Catal. A: Chem. 349(1–2), 20–27 (2011)

    Article  CAS  Google Scholar 

  52. B. Li et al., A multifunctional noble-metal-free catalyst of CuO/TiO2 hybrid nanofibers. Appl. Catal. A 531, 1–12 (2017)

    Article  CAS  Google Scholar 

  53. M.M. Karkare, Estimation of band gap and particle size of TiO2 nanoparticle synthesized using sol gel technique. In 2014 Int. Conf. Adv. Commun. Comput. Technol.  (2014). https://doi.org/10.1109/EIC.2015.7230747

    Article  Google Scholar 

  54. X. Zhu et al., One-step hydrothermal synthesis and characterization of Cu-doped TiO 2 nanoparticles/nanobucks/nanorods with enhanced photocatalytic performance under simulated solar light. J. Mater. Sci.: Mater. Electron. 30, 13826–13834 (2019)

    CAS  Google Scholar 

  55. Z. Liu, C. Zhou, Improved photocatalytic activity of nano CuO-incorporated TiO2 granules prepared by spray drying. Prog. Nat. Sci.: Mater. Int. 25(4), 334–341 (2015)

    Article  MathSciNet  CAS  Google Scholar 

  56. X. Chen et al., The effect of the Cu+/Cu2 + ratio on the redox reactions by nanoflower CuNiOS catalysts. Chem. Eng. Sci. 194, 105–115 (2019)

    Article  CAS  ADS  Google Scholar 

  57. A. Bera, S. Dey, A.J. Pal, Band mapping across a pn-junction in a nanorod by scanning tunneling microscopy. Nano Lett. 14(4), 2000–2005 (2014)

    Article  CAS  PubMed  ADS  Google Scholar 

  58. S. Chatterjee, A. Bera, A.J. Pal, p–i–n heterojunctions with BiFeO3 perovskite nanoparticles and p-and n-Type oxides: photovoltaic properties. ACS Appl. Mater. Interfaces 6(22), 20479–20486 (2014)

    Article  CAS  PubMed  Google Scholar 

  59. H.-S. Kil et al., Glycothermal synthesis and photocatalytic properties of highly crystallized anatase TiO2 nanoparticles. J. Nanosci. Nanotechnol. 15(8), 6193–6200 (2015)

    Article  CAS  PubMed  Google Scholar 

  60. C. Ashok, K. Venkateswara Rao, Microwave-assisted synthesis of CuO/TiO 2 nanocomposite for humidity sensor application. J. Mater. Sci.: Mater. Electron. 27, 8816–8825 (2016)

    CAS  Google Scholar 

  61. P. Darapaneni et al., Effect of moisture on dopant segregation in solid hosts. J. Phys. Chem. C 123(19), 12234–12241 (2019)

    Article  CAS  Google Scholar 

  62. A. Omar, M.S. Ali, N. Abd, Rahim, Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: a review. Sol. Energy. 207, 1088–1121 (2020)

    Article  CAS  ADS  Google Scholar 

  63. Z. Zolfaghari-Isavandi, Z. Shariatinia, Enhanced efficiency of quantum dot sensitized solar cells using Cu2O/TiO2 nanocomposite photoanodes. J. Alloys Compd. 737, 99–112 (2018)

    Article  CAS  Google Scholar 

  64. B. Yacoubi et al., Properties of transition metal doped-titania electrodes: impact on efficiency of amorphous and nanocrystalline dye-sensitized solar cells. Mater. Sci. Semiconduct. Process. 30, 361–367 (2015)

    Article  CAS  Google Scholar 

  65. M.A. Gondal, A.M. Ilyas, U. Baig, Pulsed laser ablation in liquid synthesis of ZnO/TiO2 nanocomposite catalyst with enhanced photovoltaic and photocatalytic performance. Ceram. Int. 42(11), 13151–13160 (2016)

    Article  CAS  Google Scholar 

  66. M. Younas et al., Fabrication of cost effective and efficient dye sensitized solar cells with WO3-TiO2 nanocomposites as photoanode and MWCNT as Pt-free counter electrode. Ceram. Int. 45(1), 936–947 (2019)

    Article  CAS  Google Scholar 

  67. S. Noor et al., ZnO/TiO2 nanocomposite photoanode as an effective UV-vis responsive dye sensitized solar cell. Mater. Res. Express. 5(9), 095905 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

AD is thankful to Swami Vivekananda Merit-Cum-Means Scholarship (SVMCM) (No.WBP211639122140 of 2020) funded by Government of West Bengal for research support. MN acknowledges DST Inspire Fellowship Code IF190229 for financial support. RN and AB gratefully acknowledge the financial assistance from SERB file no EEQ/2020/ 000156. AB acknowledges UGC-DAE CSR, Indore for the XPS measurement. SKS acknowledges the financial support from UGC-DAE CSR through a Collaborative Research Scheme (CRS) CRS/2022-23/04/896.

Author information

Authors and Affiliations

Authors

Contributions

AD: owns the materials and characterizes them, fabrication, and characterizing the devices, and draft writing. MN: helps fabricate and characterize the DSSCs and analyzing the data. RN: STM and XRD analysis. AB: STM and XRD analysis and scientific discussion to prepare manuscript. SB: scanning electron microscopy (SEM) analysis.  AJA: scientific discussion to prepare manuscript. SKS: analyze the data and finalize the draft.

Corresponding author

Correspondence to Sudip K. Saha.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Nayak, M., Nag, R. et al. Precipitation-assisted, low-temperature-annealed TiO2 and its nanocomposites-based photoanode for DSSCs. J Mater Sci: Mater Electron 35, 292 (2024). https://doi.org/10.1007/s10854-024-12055-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12055-z

Navigation