Skip to main content
Log in

Thermal, mechanical and topological studies on single crystal of propyl-p-hydroxybenzoate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The presence of benzene ring in the compound makes benzoates excellent candidates for nonlinear optical applications. Single crystal of propyl-p-hydroxybenzoate belonging to the benzoate family was synthesised using slow evaporation solution growth technique. Information about the crystal structure like unit cell parameters and crystal system was determined by powder X-ray diffraction studies. Mechanical studies were studied using Vickers microhardness tester and thermal stability of the compound was assessed using thermogravimetric analysis. The activation energy was calculated using Coats-Redfern method. The “van der Waals interaction and strong repulsion” are examined through the “non-covalent interaction”. By using “reduced density gradient” and Multiwfn to graph the data, these interactions have been scrutinized. The inter and intramolecular charge transfer of propyl-p-hydroxybenzoate has been determined using topological investigations utilizing atoms in molecules package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. L. Kamath, S. Manjunatha, Shettigar, G. Umesh, B. Narayana, S. Samshuddin, B.K. Sarojini, Investigation of third-order nonlinear and optical power limiting properties of terphenyl derivatives. Opt. Laser Technol. 56, 425–429 (2014). https://doi.org/10.1016/j.optlastec.2013.09.025

    Article  CAS  ADS  Google Scholar 

  2. D. Nayak, N. Vijayan, M. Kumari, M. Vij, S. Sridhar, G. Gupta, R.P. Pant, Bulk growth of Iminodiacetic acid single crystal and its characterization for nonlinear optical applications. Bull. Mater. Sci. (2021). https://doi.org/10.1007/s12034-020-02338-6

    Article  Google Scholar 

  3. N. Karunagaran, P. Ramasamy, R.P. Ramasamy, Growth and characterization of propyl-para-hydroxybenzoate single crystals. Bull. Mater. Sci. 37, 1461–1469 (2014). https://doi.org/10.1007/s12034-014-0097-z

    Article  CAS  Google Scholar 

  4. S. Prince, T. Suthan, S. Goma, C. Gnanasambandam, N.P. Rajesh, Growth and characterization of organic 4-methoxy-2- nitroaniline single crystals for optical applications. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-07772-2

    Article  Google Scholar 

  5. D. Nayak, N. Vijayan, M. Kumari, N. Kiran, Vashistha, M. Kumara, R.P. Pant, In situ growth of an ethyl p-hydroxybenzoate single crystal by the vertical Bridgman technique: a potential nonlinear optical material for third harmonic generation. J. Appl. Crystallogr. (2021). https://doi.org/10.1016/j.jpcs.2022.110768

    Article  Google Scholar 

  6. N. Karunagaran, P. Ramasamy, Growth of ethyl-para-hydroxybenzoate single crystal and its characterization. Adv. Mat. Res.  (2012). https://doi.org/10.4028/www.scientific.net/AMR.584.121

    Article  Google Scholar 

  7. F. Giordano, R. Bettini, C. Donini, A. Gazzaniga, M.R. Caira, G.G.Z. Zhang, D.J.W. Grant, Physical properties of parabens and their mixtures: Solubility in water, thermal behavior, and crystal structures. J. Pharm. Sci. (1999). https://doi.org/10.1021/js9900452

    Article  PubMed  Google Scholar 

  8. Y. Zhou, G. Matsadiq, Y. Wu, J. Xiao, J. Cheng, Propyl-4-hydroxybenzoate. Acta Crystallogr. E. 66, o485 (2010). https://doi.org/10.1107/S1600536810000139

    Article  CAS  Google Scholar 

  9. K. Kumar, S. Rajathi, V.C. Vincent, R. Sangeetha, G. Bakiyaraj, K. Kirubavathi, K. Selvaraju, G. Vinitha, Experimental and theoretical investigations of propyl para-hydroxybenzoate crystal for optical applications. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06961-9

    Article  Google Scholar 

  10. S.S.B. Solanki, R.N. Perumal, T. Suthan, Growth and characterisation of propyl 4-hydroxybenzoate single crystal by vertical Bridgman technique. Mater. Res. Innov. (2017). https://doi.org/10.1080/14328917.2016.1266428

    Article  Google Scholar 

  11. D. Nayak, N. Vijayan, M. Kumari, P. Vashishtha, S.K. Saini, A.K. Gangwar, G. Gupta, R.P. Pant, Effect of shock wave on optical properties of propyl p-hydroxybenzoate single crystal: A self-defocusing third order nonlinear optical material. J. Phys. Chem. Solids (2022). https://doi.org/10.1016/j.optmat.2022.112986

    Article  Google Scholar 

  12. V. Mohankumar, N. Karunagaran, M.S. Pandian, P. Ramasamy, Density functional theory calculations and Hirshfeld surface analysis of propyl-para-hydroxybenzoate (PHB) for optoelectronic application. Mater. Sci. Pol. 38, 386–393 (2020). https://doi.org/10.2478/msp-2020-0046

    Article  CAS  ADS  Google Scholar 

  13. Y. Zhang, X. Xu, Lattice Misfit predictions via the gaussian process regression for Ni based single crystal superalloys. Met. Mater. Int. 27, 235–253 (2021). https://doi.org/10.1007/s12540-020-00883-7

    Article  CAS  Google Scholar 

  14. A.W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data. Nature 201, 68–69 (1964). https://doi.org/10.1038/201068a0

    Article  CAS  ADS  Google Scholar 

  15. V.N. Kiran, D. Nayak, M. Kumari, K. Vinod, Kumar, P. Vashishtha, N. Thirughanasambantham, V. Balachandran, B. Sridhar, G. Gupta, A comprehensive assessment on synthesis, growth, theoretical & optical properties of glycine zinc sulphate pentahydrate single crystal for third-order nonlinear optical applications. J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-11574-5

    Article  Google Scholar 

  16. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. (1969). https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  17. J.R. Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. 192, 55–69 (1993). https://doi.org/10.1016/0921-4526(93)90108-I

    Article  ADS  Google Scholar 

  18. D.J. Vogel, D.S. Kilin, First-principles treatment of photoluminescence in semiconductors. J. Phys. Chem. C (2015). https://doi.org/10.1021/acs.jpcc.5b06434

    Article  Google Scholar 

  19. M. Kumari, N. Vijayan, D. Nayak, M. Kumar, G. Gupta, R.P. Pant, Assessment of optical, mechanical and nonlinear properties of potassium acid phthalate single crystal: a potential candidate for optoelectronic applications. Mater. Res. Express (2020). https://doi.org/10.1088/2053-1591/ab619e

    Article  Google Scholar 

  20. S. Karan, S.S. Gupta, S.P.S. Gupta, Microhardness and its related physical constants in solution-grown ammonium sulphate single crystals.  Mater. Chem. Phys. (2001). https://doi.org/10.1016/S0254-0584(00)00362-X

    Article  Google Scholar 

  21. E.M. Onitsch, Mikroskopia 2, 131 (1947)

    Google Scholar 

  22. Y. Zhang, X. Xu, Machine learning modeling of lattice constants for half-Heusler alloys. AIP Adv. (2020). https://doi.org/10.1063/5.0002448

    Article  PubMed  PubMed Central  Google Scholar 

  23. Y. Zhang, X. Xu, Machine learning properties of electrolyte additives: a focus on Redox potentials. Ind. Eng. Chem. Res. 60, 343–354 (2021). https://doi.org/10.1021/acs.iecr.0c0505

    Article  CAS  Google Scholar 

  24. Y. Zhang, X. Xu, Machine learning the magnetocaloric effect in manganites from lattice parameters. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03503-8

    Article  Google Scholar 

  25. C. Hays, E.G. Kendall, Metallography 6, 245 (1973)

    Article  Google Scholar 

  26. G. Shanmugam, S. Brahadeeswaran, Spectroscopic, thermal and mechanical studies on 4-methylanilinium p-toluenesulfonate: a new organic NLO single crystal. Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 177–183 (2012). https://doi.org/10.1016/j.saa.2012.04.100

    Article  CAS  PubMed  ADS  Google Scholar 

  27. S.K. Paswan, S. Kumari, M. Kar, A. Singh, H. Pathak, J.P. Borah, L. Kumar, Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. J. Phys. Chem. Solids. 621, 413280 (2021). https://doi.org/10.1016/j.physb.2021.413280

    Article  CAS  Google Scholar 

  28. T. Lu, F. Chen, A multifunctional wavefunction analyzer. J. Comput. Chem. (2011). https://doi.org/10.1002/jcc.22885

    Article  PubMed  Google Scholar 

  29. W. Humprey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

  30. G. Saleh, C. Gatti, L.L. Presti, Non-covalent interaction via the reduced density gradient: independent atom model vs experimental multipolar electron densities. Comput. Theor. Chem. 998, 148–163 (2012). https://doi.org/10.1016/j.comptc.2012.07.014

    Article  CAS  Google Scholar 

  31. E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen, W. Yang, Revealing noncovalent interactions. J. Am. Chem. Soc. (2010). https://doi.org/10.1021/ja100936w

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jacobsen, Localized-orbital locator (LOL) profiles of chemical bonding. Can. J. Chem. 86, 695–702 (2008). https://doi.org/10.1139/v08-052

    Article  CAS  Google Scholar 

  33. B. Silvi, A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions. Nature. 371, 683–686 (1994). https://doi.org/10.1038/371683a0

    Article  CAS  ADS  Google Scholar 

  34. M. Michalski, A.J. Gordon, S. Berski, Topological analysis of the electron localization function (ELF) applied to the electronic structure of oxaziridine: the nature of N–O bond. Struct. Chem. 30, 2181–2189 (2019). https://doi.org/10.1007/s11224-019-01407-9

    Article  CAS  Google Scholar 

Download references

Funding

The authors are thankful to Director CSIR-NPL for encouragement to make this present work possible. One of the authors Divyansh Joshi is thankful to DST-INSPIRE for providing financial support and AcSIR for academic registration.

Author information

Authors and Affiliations

Authors

Contributions

DJ: Investigation, Methodology, Writing—original draft, Writing—review & editing. NV: Conceptualization, supervision. K: Investigation, Writing—review and editing, Formal analysis, Methodology. J: Writing—review and editing. PG: Writing—review and editing. MK: Writing—review & editing, Formal analysis. GG: Writing—review and editing. VB: Writing—review & editing, Formal analysis.

Corresponding author

Correspondence to N. Vijayan.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, D., Vijayan, N., Kiran et al. Thermal, mechanical and topological studies on single crystal of propyl-p-hydroxybenzoate. J Mater Sci: Mater Electron 35, 327 (2024). https://doi.org/10.1007/s10854-024-12050-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12050-4

Navigation