Skip to main content
Log in

Low-temperature synthesis of a novel diboride ceramic with electromagnetic wave absorption properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

At present, electromagnetic wave (EMW) absorption materials face challenges in terms of high efficiency, strong absorption, and low-cost preparation. Based on the thermodynamic behavior analysis of the initial raw materials and the design of temperature curves, a novel (Mo0.2Zr0.2Ti0.2Nb0.2Ta0.2)B2 high-entropy ceramic with a small amount of oxide impurities was successfully synthesized under low-temperature conditions, using a simple thermal reaction method. Test analysis shows that the material has a two-dimensional nanostructured and excellent EMW absorption performance. Within the wide frequency range of 10.8–18.0 GHz, the reflection loss (RL) values of the samples are all less than − 10 dB. Especially, the minimum RL value (sample thickness 6 mm, at 11.4 GHz) can reach − 36.4 dB (99.9% wave absorption). Its excellent EMW absorption performance is related to its good impedance matching and multiple losses. This work provides a low-temperature preparation method for strong EMW absorption materials, and the performance and composition of the material system are adjustable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (Q. Chen) upon reasonable request.

References

  1. J.L. Jones, S. Curtarolo, J.P. Maria, C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015)

    Article  ADS  PubMed  Google Scholar 

  2. J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N.X. Zhou, K. Vecchio, J. Luo, High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Q. Huang, Y. Gogotsi, H.M. Ding, Y.B. Li, M. Li, K. Chen, K. Liang, G.X. Chen, J. Lu, J. Palisaitis, P.A. Persson, P. Eklund, L. Hultman, S.Y. Du, Z.F. Chai, Chemical-scissor-mediated structural editing of layered transition metal carbides. Science 379, 1130–1135 (2023)

    Article  ADS  PubMed  Google Scholar 

  4. Q. Huang, P. Simon, Y.B. Li, H. Shao, Z.F. Lin, J. Lu, L.Y. Liu, B. Duployer, P. Persson, P. Eklund, L. Hultman, M. Li, K. Chen, X.H. Zha, S.Y. Du, P. Rozier, Z.F. Chai, E. Raymundo-Pinero, P.L. Taberna, A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020)

    Article  ADS  PubMed  Google Scholar 

  5. Y.S. Fang, J. Yuan, T.T. Liu, Q.Q. Wang, W.Q. Cao, M.S. Cao, Clipping electron transport and polarization relaxation of Ti3C2Tx based nanocomposites towards multifunction. Carbon 201, 371–380 (2023)

    Article  CAS  Google Scholar 

  6. M. Zhang, M.S. Cao, Q.Q. Wang, X.X. Wang, W.Q. Cao, H.J. Yang, J. Yuan, A multifunctional stealthy material for wireless sensing and active camouflage driven by configurable polarization. J. Mater. Sci. Technol. 132, 42–49 (2023)

    Article  CAS  Google Scholar 

  7. M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)

    Article  CAS  Google Scholar 

  8. C. Oses, C. Toher, S. Curtarolo, High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020)

    Article  ADS  CAS  Google Scholar 

  9. G.J. Zhang, D.W. Ni, J. Zou, H.T. Liu, W.W. Wu, J.X. Liu, T.S. Suzuki, Y. Sakka, Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—A review. J. Eur. Ceram. Soc. 38, 371–389 (2018)

    Article  CAS  Google Scholar 

  10. W.M. Zhang, F.Z. Dai, H.M. Xiang, B. Zhao, X.H. Wang, N. Ni, R. Karre, S.J. Wu, Y.C. Zhou, Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HE TMB2). J. Adv. Ceram. 10, 1299–1316 (2021)

    Article  CAS  Google Scholar 

  11. G. Tallarita, R. Licheri, S. Garroni, R. Orru, G. Cao, Novel processing route for the fabrication of bulk high-entropy metal diborides. Scr. Mater. 158, 100–104 (2019)

    Article  CAS  Google Scholar 

  12. Y. Zhang, W.M. Guo, Z.B. Jiang, Q.Q. Zhu, S.K. Sun, Y. You, K. Plucknett, H.T. Lin, Dense high-entropy boride ceramics with ultra-high hardness. Scr. Mater. 164, 135–139 (2019)

    Article  CAS  Google Scholar 

  13. H. Chen, H.M. Xiang, F.Z. Dai, J.C. Liu, Y.C. Zhou, Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: a novel strategy towards making ultrahigh temperature ceramics thermal insulating. J. Mater. Sci. Technol. 35, 2404–2408 (2019)

    Article  CAS  Google Scholar 

  14. M.D. Qin, Q.Z. Yan, Y.L. Liu, H.R. Wang, C.Y. Wang, T.J. Lei, K.S. Vecchio, H.L. Xin, T.J. Rupert, J. Luo, Bulk high-entropy hexaborides. J. Eur. Ceram. Soc. 41, 5775–5781 (2018)

    Article  Google Scholar 

  15. M.D. Ma, B.L. Ye, Y.J. Han, L. Sun, J.L. He, Y.H. Chu, High-pressure sintering of ultrafine-grained high-entropy diboride ceramics. J. Am. Ceram. Soc. 103, 6655–6658 (2020)

    Article  CAS  Google Scholar 

  16. M. Qin, L.M. Zhang, H.J. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9, 2105553 (2022)

    Article  CAS  Google Scholar 

  17. X.J. Zeng, X.Y. Cheng, R.H. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020)

    Article  CAS  Google Scholar 

  18. W.M. Zhang, H.M. Xiang, F.Z. Dai, B. Zhao, S.J. Wu, Y.C. Zhou, Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs). J. Adv. Ceram. 11, 545–555 (2022)

    Article  CAS  Google Scholar 

  19. P.J. Liu, V.H. Ng, Z.J. Yao, J.T. Zhou, Y.M. Lei, Z.H. Yang, H.L. Lv, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interfaces 9, 16404–16416 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. P.J. Liu, Z.J. Yao, J.T. Zhou, Z.H. Yangad, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C. 4, 9738–9749 (2016)

    Article  CAS  Google Scholar 

  21. P.J. Liu, Z.J. Yao, V.H. Ng, J.T. Zhou, L.B. Kong, K. Yue, Facile synthesis of ultrasmall Fe3O4 nanoparticles on MXenes for high microwave absorption performance. Compos. Part A 115, 371–382 (2018)

    Article  CAS  Google Scholar 

  22. Z. Liu, Y.K. Wang, C. Xian, K.W. Li, F.G. Wang, P.Y. Zhang, W.Y. Yang, S.Q. Liu, C.S. Wang, H.L. Du, Z.C. Luo, J.M. Tang, X.D. Kong, L. Han, Y.L. Hou, J.B. Yang, High-performance microwave absorbers using a simple double-layer absorbing structure to improve impedance mismatching. J. Alloys Compd. 938, 168649 (2023)

    Article  CAS  Google Scholar 

  23. M. Green, X.B. Chen, Recent progress of nanomaterials for microwave absorption. J. Materiomics. 5, 503–541 (2019)

    Article  Google Scholar 

  24. Z. Su, M.W. Yao, F. Li, Y. Peng, Q. Feng, X. Yao, Microstructural transitions and dielectric properties of boron-doped amorphous alumina thin film. J. Mater. Sci. 52, 9314–9323 (2017)

    Article  ADS  CAS  Google Scholar 

  25. M. Bengisu, Borate glasses for scientific and industrial applications: a review. J. Mater. Sci. 51, 2199–2242 (2016)

    Article  ADS  CAS  Google Scholar 

  26. N.M. Bobkova, Thermal expansion of binary borate glasses and their structure. Glass Phys. Chem. 29, 501–507 (2003)

    Article  CAS  Google Scholar 

  27. D. Liu, T.Q. We, B.L. Ye, Y.H. Chu, Synthesis of superfine high-entropy metal diboride powders. Scr. Mater. 167, 110–114 (2019)

    Article  ADS  CAS  Google Scholar 

  28. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A. 32, 751–767 (1976)

    Article  Google Scholar 

  29. L.J. Qiao, J.Q. Bi, G.D. Liang, C. Liu, Z.Z. Yin, Y. Yang, H.Y. Wang, S.Y. Wang, M.M. Shang, W.L. Wang, Synthesis and electromagnetic wave absorption performances of a novel (Mo0.25Cr0.25Ti0.25V0.25)3AlC2 high-entropy MAX phase. J. Mater. Sci. Technol. 137, 112–122 (2023)

    Article  CAS  Google Scholar 

  30. J.B. Shen, M. Zhang, S. Lin, W.H. Song, H.J. Liu, Q.C. Liu, X.B. Zhu, Y.P. Sun, High-entropy enhanced microwave absorption in MAX phases. J. Appl. Phys. 133, 235101 (2023)

    Article  ADS  CAS  Google Scholar 

  31. R. Shu, N. Li, X. Li, J. Sun, Preparation of FeNi/C composite derived from metal-organic frameworks as high-efficiency microwave absorbers at ultrathin thickness. J. Colloid Interface Sci. 606, 1918–1927 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. C. Wu, Z.F. Chen, M.L. Wang, X. Cao, Y. Zhang, P. Song, T.Y. Zhang, X.L. Ye, Y. Yang, W.H. Gu, J.D. Zhou, Y.Z. Huang, Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 16, 2001686 (2020)

    Article  CAS  Google Scholar 

  33. Y. Liu, F. Luo, W.C. Zhou, D.M. Zhu, Dielectric and microwave absorption properties of Ti3SiC2 powders. J. Alloys Compd. 576, 43–47 (2013)

    Article  CAS  Google Scholar 

  34. X. Jian, W. Tian, J.Y. Li, L.J. Deng, Z.W. Zhou, L. Zhang, H.P. Lu, L.J. Yin, N. Mahmood, High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl. Mater. Interfaces 11, 15869–15880 (2019)

    Article  CAS  PubMed  Google Scholar 

  35. Z.R. Song, M.X. Sun, L.P. Wu, F. Wu, A.M. Xie, Dielectric loss behavior and microwaves absorption properties of TiB2 ceramic Mater. Res. Express. 7, 046301 (2020)

    Article  CAS  Google Scholar 

  36. W.L. Wang, G.X. Sun, X.N. Sun, Z.X. Zhang, J.T. Zhang, Y.J. Liang, J.Q. Bi, Electromagnetic wave absorbing properties of high-entropy transition metal carbides powders. Mater. Res. Bull. 163, 112212 (2023)

    Article  CAS  Google Scholar 

  37. Y.B. Gong, Z.G. Yang, X.G. Wei, S.L. Song, S.Q. Ma, Synthesis and electromagnetic wave absorbing properties of high-entropy metal diboride-silicon carbide composite powders. J. Mater. Sci. 57, 9218–9230 (2022)

    Article  ADS  CAS  Google Scholar 

  38. X. Zhang, Y. Shi, J. Xu, Q. Ouyang, X. Zhang, C. Zhu, X. Zhang, Y. Chen, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1–17 (2022)

    Article  ADS  Google Scholar 

  39. R. Wang, M. He, Y. Zhou, S. Nie, Y. Wang, W. Liu, Q. He, W. Wu, X. Bu, X. Yang, Self-Assembled 3D flower-like composites of heterobimetallic phosphides and carbon for temperature-tailored electromagnetic wave absorption. ACS Appl. Mater. Interfaces 11, 38361–38371 (2019)

    Article  CAS  PubMed  Google Scholar 

  40. L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang, H.B. Zhang, X. Zhou, C. Liu, C. Shen, X. Xie, Multifunctional magnetic Ti3C2Tx MXene/Graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15, 6622 (2021)

    Article  CAS  PubMed  Google Scholar 

  41. X.X. Sun, Y.B. Li, Y.X. Huang, Y.J. Cheng, S.S. Wang, W.L. Yin, Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv. Funct. Mater. 32, 2107508 (2022)

    Article  CAS  Google Scholar 

  42. G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang, Y. Qin, High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7, 704–716 (2014)

    Article  CAS  Google Scholar 

  43. Q. Zheng, J.Q. Wang, M.J. Yu, W.Q. Cao, H.Z. Zhai, M.S. Cao, Heterodimensional structure porous nanofibers embedded confining magnetic nanocrystals for electromagnetic functional material and device. Carbon 210, 118049 (2023)

    Article  CAS  Google Scholar 

  44. M. Ma, Q. Zheng, X.C. Zhang, L. Li, M.S. Cao, VSe2/CNTs nanocomposites toward superior electromagnetic wave absorption performance. Carbon 212, 118159 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

National Natural Science Foundation of China, Grant No. 62241304, Zhonggang XiongXiong, Guangxi Natural Science Foundation, Grant No. 2021JJA110120,Qingyun Chen,Yongjiang Talent Introduction Programme of Ningbo, Grant No. 2021A-108-G,Yuezhong Wang,Guilin University of Technology Research Startup Fund, Grant No. GUTQDJJ 202101, Qingyun Chen

Author information

Authors and Affiliations

Authors

Contributions

CL: Conceptualization; Data curation; Visualization; Writing–original draft. QC: Conceptualization; Funding acquisition; Writing–review & editing. XL: Formal analysis; Investigation. ZX: Formal analysis. JH: Data curation; Visualization. GY: Formal analysis. KY: Data curation. YW: Funding acquisition, Investigation, Writing–review & editing. YC: Investigation, Writing–review & editing. NJ: Conceptualization, Funding acquisition.

Corresponding authors

Correspondence to Qingyun Chen, Yuezhong Wang or Yong Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Chen, Q., Li, X. et al. Low-temperature synthesis of a novel diboride ceramic with electromagnetic wave absorption properties. J Mater Sci: Mater Electron 35, 287 (2024). https://doi.org/10.1007/s10854-024-12044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12044-2

Navigation