Skip to main content
Log in

Spray pyrolyzed Al-doped SnO2 films with desirable type inversion and physical properties for use in transparent thin-film heater

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin layers of pristine SnO2 and Al-doped SnO2 have been synthesized directly on glass via easy ultrasonic spray pyrolysis technique. Different amounts of Al were employed as dopant to study its impact on the sample’s characteristics. The samples were then applied as transparent thin-film heater. It was found that the visible light transmittance of the sample is better at lower Al concentrations (0, 3, 5, 7 and 10 wt%). The presence of aluminum in the sample causes a blue shift that gets stronger as the amount of aluminum increases. This rise may be attributable to the fact that holes created by Al doping, which were previously n-type carriers, now act as a counterbalance. By adjusting the Al dopant, allowed us to produce a film with a resistivity of 3.54 × 10–4 Ω cm, a transmittance of 87% at 550 nm, and a merit figure up to 54.5 × 10–3 Ω−1. It is pointed out that Al-doped SnO2 could be used transparent heaters because the surface temperature of the sample went up to 76.7 °C when a 20 V voltage was applied for 300 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors declare that data will be made available on reasonable request.

References

  1. R. Ramarajan, M. Kovendhan, K. Thangaraju, D.P. Joseph, R.R. Babu, Appl. Surf. Sci. 487, 1385–1393 (2019)

    Article  ADS  CAS  Google Scholar 

  2. H. Kaur, H.S. Bhatti, K. Singh, RSC Adv. 9, 37450–37466 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. L. Ran, D. Zhao, X. Gao, L. Yin, CrystEngComm 17, 4225–4237 (2015)

    Article  CAS  Google Scholar 

  4. N. Yu, C. Peng, Z. Wang, Z. Liu, B. Zhu, Z. Yi, M. Zhu, X. Liu, Z. Chen, Nanoscale 10, 2542–2554 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. R. Ramarajan, Superlattices Microstruct. 135, 106274 (2019)

    Article  CAS  Google Scholar 

  6. L.T.C. Tuyen, S.-R. Jian, N.T. Tien, P.H. Le, Materials 12, 1665 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. J. Yang, T. Meng, Z. Yang, C. Cui, Q. Zhang, J. Phys. D Appl. Phys. 48, 435108 (2015)

    Article  Google Scholar 

  8. V. Fauzia, M. Yusnidar, L.H. Lalasari, A. Subhan, A.A. Umar, J. Alloy. Compd. 720, 79–85 (2017)

    Article  CAS  Google Scholar 

  9. S. Vidhya, O. Balasundaram, M. Chandramohan, J. Saudi Chem. Soc. 20, 703–710 (2016)

    Article  CAS  Google Scholar 

  10. M. Fukumoto, S. Nakao, K. Shigematsu, D. Ogawa, K. Morikawa, Y. Hirose, T. Hasegawa, Sci. Rep. 10, 1–9 (2020)

    Article  Google Scholar 

  11. S.N.S. Lekshmy, V.S.N. Anitha, P.V. Thomas, K. Joy, J. Am. Ceram. Soc. 10, 3184–3191 (2014)

    Article  Google Scholar 

  12. N. Kaur, Abhinav, G.P. Singh, V. Singh, S. Kumar, D. Kumar, AIP Conference Proceedings, AIP Publishing LLC, 2016, p. 020055.

  13. G.K. Deyu, D. Muñoz-Rojas, L. Rapenne, J.-L. Deschanvres, A. Klein, C. Jiménez, D. Bellet, Molecules 24, 2797 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Y. Duan, J. Zheng, N. Fu, Y. Fang, T. Liu, Q. Zhang, X. Zhou, Y. Lin, F. Pan, J. Mater. Chem. A 3, 3066–3073 (2015)

    Article  CAS  Google Scholar 

  15. H. Liu, Z. Zhang, X. Zhang, Y. Cai, Y. Zhou, Q. Qin, X. Lu, X. Gao, L. Shui, S. Wu, Electrochim. Acta 272, 68–76 (2018)

    Article  CAS  Google Scholar 

  16. M. Esro, S. Georgakopoulos, H. Lu, G. Vourlias, A. Krier, W. Milne, W. Gillin, G. Adamopoulos, J. Mater. Chem. C 4, 3563–3570 (2016)

    Article  CAS  Google Scholar 

  17. K. Suematsu, N. Ma, M. Yuasa, T. Kida, K. Shimanoe, RSC Adv. 5, 86347–86354 (2015)

    Article  ADS  CAS  Google Scholar 

  18. T.P. Nguyen, I.T. Kim, Nanomaterials 10, 2558 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. P. Chetri, J.C. Dhar, Mater. Sci. Semicond. Process. 100, 123–129 (2019)

    Article  CAS  Google Scholar 

  20. M. Gharesi, M. Ansari, M. Akbari-Saatlu, Mater. Res. Express 4, 076303 (2017)

    Article  ADS  Google Scholar 

  21. M. Benhaliliba, C. Benouis, Y. Ocak, F. Yakuphanoglu (2012)

  22. S.K. Sinha, J. Asian Ceramic Soc. 6, 232–239 (2018)

    Article  Google Scholar 

  23. A. Doyan, Susilawati, Y.D. Imawanti, AIP Conference Proceedings, AIP Publishing LLC, p. 020005 (2017)

  24. U. Altaf, M.Z. Ansari, S. Rubab, Mater. Chem. Phys. 297, 127304 (2023)

    Article  CAS  Google Scholar 

  25. M. Kormunda, D. Fischer, A. Hertwig, U. Beck, M. Sebik, N. Esser, Phys. Status Solidi A 213, 2303–2309 (2016)

    Article  ADS  CAS  Google Scholar 

  26. A.T. Abood, O.A.A. Hussein, M.H. Al-Timimi, M.Z. Abdullah, H.M.S. Al Aani, W.H. Albanda, AIP Conference Proceedings, AIP Publishing LLC, 2020, p. 020036

  27. S. Sinha, S. Ray, I. Manna, Phil. Mag. 94, 3507–3521 (2014)

    Article  ADS  CAS  Google Scholar 

  28. T. Abendroth, B. Schumm, S.A. Alajlan, A.M. Almogbel, G. Mäder, P. Härtel, H. Althues, S. Kaskel, Thin Solid Films 624, 152–159 (2017)

    Article  ADS  CAS  Google Scholar 

  29. P.-M. Lee, Y.-S. Liu, L. Villamagua, A. Stashans, M. Carini, C.-Y. Liu, J. Phys. Chem. C 120, 4211–4218 (2016)

    Article  CAS  Google Scholar 

  30. M. Khalfallah, N. Guermat, W. Daranfed, N. Bouarissa, H. Bakhti, Phys. Scr. 95, 095805 (2020)

    Article  ADS  CAS  Google Scholar 

  31. C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, J. Alloy. Compd. 666, 392–405 (2016)

    Article  CAS  Google Scholar 

  32. H. Wang, K. Dou, W.Y. Teoh, Y. Zhan, T.F. Hung, F. Zhang, J. Xu, R. Zhang, A.L. Rogach, Adv. Func. Mater. 23, 4847–4853 (2013)

    Article  CAS  Google Scholar 

  33. T. Liu, L. Li, X. Geng, C. Yang, S. Huang, J. Market. Res. 24, 8150–8161 (2023)

    CAS  Google Scholar 

  34. C. Benouis, M. Benhaliliba, Z. Mouffak, A. Avila-Garcia, A. Tiburcio-Silver, M.O. Lopez, R.R. Trujillo, Y. Ocak, J. Alloy. Compd. 603, 213–223 (2014)

    Article  CAS  Google Scholar 

  35. S. Mustapha, J. Tijani, M. Ndamitso, A. Abdulkareem, D. Shuaib, A. Amigun, H. Abubakar, Int. Nano Lett. 11, 241–261 (2021)

    Article  CAS  Google Scholar 

  36. Y. Kawami, X.Q. Tran, K. Aso, T. Yamamoto, Y. Wang, M. Li, A. Yago, S. Matsumura, K. Nogita, J. Zou, Small 18, 2204225 (2022)

    Article  CAS  Google Scholar 

  37. R. Beura, R. Pachaiappan, P. Thangadurai, Appl. Surf. Sci. 433, 887–898 (2018)

    Article  ADS  CAS  Google Scholar 

  38. A. Tschöpe, E. Sommer, R. Birringer, Solid State Ionics 139, 255–265 (2001)

    Article  Google Scholar 

  39. R. Ramarajan, N. Purushothamreddy, R.K. Dileep, M. Kovendhan, G. Veerappan, K. Thangaraju, D.P. Joseph, Sol. Energy 211, 547–559 (2020)

    Article  ADS  CAS  Google Scholar 

  40. Y.Y. Wang, B.J. Li, L.J. Huang, L. Zhao, N.F. Ren, J. Alloys Compd. 829, 154504 (2020)

    Article  CAS  Google Scholar 

  41. C.H. Chang, M. Gong, S. Dey, F. Liu, R.H. Castro, J. Phys. Chem. C 119, 6389–6397 (2015)

    Article  CAS  Google Scholar 

  42. D.H. Machado, J.H. da Silva, A. Tabata, L.V. Scalvi, Mater. Res. Bull. 120, 110585 (2019)

    Article  CAS  Google Scholar 

  43. P. Gorai, B.R. Ortiz, E.S. Toberer, V. Stevanović, J. Mater. Chem. A 6, 13806–13815 (2018)

    Article  CAS  Google Scholar 

  44. N. Guermat, W. Darenfad, K. Mirouh, N. Bouarissa, M. Kalfallah, A. Herbadji, Euro. Phys. J. Appl. Phys. 97, 14 (2022)

    Article  ADS  CAS  Google Scholar 

  45. H.S. Akkera, V. Mann, B. Varalakshmi, M. Ploloju, N. Kambhala, G. Venkatesh, J. Mater. Sci. Mater. Electron. 34, 1044 (2023)

    Article  CAS  Google Scholar 

  46. H.T. Girao, Pressure-induced disorder in bulk and nanometric SnO2, Université de Lyon (2018)

  47. G. Davidson, Spec. Period. Rep. Spectrosc. Prop. Inorg. Organomet. 38, 189–240 (2006)

    CAS  Google Scholar 

  48. M. Sharma, S. Kumar, R.N. Aljawfi, S. Dalela, S. Dolia, A. Alshoaibi, P. Alvi, J. Electron. Mater. 48, 8181–8192 (2019)

    Article  ADS  CAS  Google Scholar 

  49. S.H. Park, Y.-K. Oh, Y.-J. Lim, C. Shaozheng, S.-J. Lee, H.-K. Kim, Ceram. Int. 49, 2419–2426 (2023)

    Article  CAS  Google Scholar 

  50. P. Senthilkumar, S. Raja, R.R. Babu, G. Vasuki, J. Phys. Chem. Solids 174, 111177 (2023)

    Article  CAS  Google Scholar 

  51. N. Tsuda, K. Nasu, A. Fujimori, K. Siratori, Electronic conduction in oxides (Springer, Berlin, 2000)

    Book  Google Scholar 

  52. F. Moharrami, M. Bagheri-Mohagheghi, H. Azimi-Juybari, M. Shokooh-Saremi, Phys. Scr. 85, 015703 (2011)

    Article  ADS  Google Scholar 

  53. E. Elangovan, S. Shivashankar, K. Ramamurthi, J. Cryst. Growth 276, 215–221 (2005)

    Article  ADS  CAS  Google Scholar 

  54. H. Hosono, K. Ueda, Springer Handbook of Electronic and Photonic Materials (Springer, Cham, 2017)

    Google Scholar 

  55. K. Ravichandran, K. Thirumurugan, J. Mater. Sci. Technol. 30, 97–102 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

This research project was made possible by a grant from DIPA IAIN Batusangkar No. 025-04.2.424069/2022, which was awarded by UIN Mahmud Yunus Batusangkar.

Author information

Authors and Affiliations

Authors

Contributions

ERM: provided financial support, LR: conceptualization, validation and drafted the manuscript, VF: provided some material characterizations, KK: collected the raw data and analyzed the data and MYAR: reviewed, revised and submitted the manuscript.

Corresponding author

Correspondence to L. Roza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mawarnis, E.R., Roza, L., Fauzia, V. et al. Spray pyrolyzed Al-doped SnO2 films with desirable type inversion and physical properties for use in transparent thin-film heater. J Mater Sci: Mater Electron 35, 275 (2024). https://doi.org/10.1007/s10854-024-12030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12030-8

Navigation