Skip to main content
Log in

Modulating surface-state-induced band bending for efficient charge transport and photoelectrochemical hydrogen production over bismuth vanadate photoanode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The main challenge in photoelectrochemical (PEC) hydrogen production is designing efficient photoanodes. Although bismuth vanadate (BiVO4) is an ideal photoanode light absorber. The fast charge recombination and poor charge transport rate of BiVO4 seriously restrict its application as PEC water decomposition photoanode. In order to improve these effects, in this work, the surface composition of bismuth vanadate was manipulated by introducing trace amount of β-bismuth oxide onto the surface. After that, the optimized photoanode’s photocurrent and hydrogen production were significantly improved, which are mainly attributed to the improvement of depletion region width and band bending, photogenerated carrier transfer, and separation. This work clarifies that only trace amount of second phase is needed to improve the photoelectrochemical activity by constructing heterojunction. We expect that the proposed strategy is applicable to improve the photoelectron conversion in bismuth-based semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446–6473 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. H.S. Han, S. Shin, D.H. Kim, I.J. Park, J.S. Kim, P.S. Huang, J.K. Lee, I.S. Cho, X. Zheng, Energy Environ. Sci. 11, 1299 (2018)

    Article  CAS  Google Scholar 

  3. A.J. Bard, M.A. Fox, Chem. Res. 28, 141–145 (1995)

    Article  CAS  Google Scholar 

  4. Y. Hou, T. Li, S. Yan, Z. Zou, Appl. Catal. B-Environ. 269, 118777 (2020)

    Article  CAS  Google Scholar 

  5. S. Wang, X. Wang, B. Liu, Z. Guo, K.K. Ostrikov, L. Wang, W. Huang, Nanoscale 13, 17989–18009 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. S. Wang, P. Chen, J.H. Yun, Y. Hu, L. Wang, Angew. Chem. Int. Ed. 56, 8500–8504 (2017)

    Article  CAS  Google Scholar 

  7. F.F. Abdi, T.J. Savenije, M.M. May, B. Dam, R. van de Krol, J. Phys. Chem. Lett. 4, 2752–2757 (2013)

    Article  CAS  Google Scholar 

  8. L. Xia, J. Bai, J. Li, Q. Zeng, L. Li, B. Zhou, Appl. Catal. B-Environ. 204, 127–133 (2017)

    Article  CAS  Google Scholar 

  9. P. Mane, I.V. Bagal, H. Bae, A.N. Kadam, V. Burungale, J. Heo, S.W. Ryu, J.S. Ha, Int. J. Hydrogen Energy 47, 39796–39828 (2022)

    Article  CAS  Google Scholar 

  10. J.H. Kim, J.S. Lee, Energy Environ. Focus 3, 339–353 (2014)

    Article  Google Scholar 

  11. B.S. Kalanoor, H. Seo, S.S. Kalanur, Mater. Sci. Energy Technol. 1, 49–62 (2018)

    Google Scholar 

  12. Y. Jiazhen, Z. Yue, H. Wanxia, Tu. Mingjin, Thin Solid Films 516, 8554–8558 (2008)

    Article  ADS  Google Scholar 

  13. F.Q. Zhou, J.C. Fan, Q.J. Xu, Y.L. Min, Appl. Catal. B-Environ. 201, 77–83 (2017)

    Article  CAS  Google Scholar 

  14. Y. Hou, M. Qiu, G. Nam, M.G. Kim, T. Zhang, K. Liu, X. Zhuang, J. Cho, C. Yuan, X. Feng, Nano Lett. 17, 4202–4209 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. B.C. Xiao, L.Y. Lin, J.Y. Hong, H.S. Lin, Y.T. Song, RSC Adv. 7, 7547–7554 (2017)

    Article  ADS  CAS  Google Scholar 

  16. J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 32, 222–243 (2020)

    Article  CAS  Google Scholar 

  17. J. Yang, D. Wang, H. Han, C.A.N. Li, Acc. Chem. Res. 46, 1900–1909 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. L.L. Bi, D.D. Xu, L.J. Zhang, Y.H. Lin, D.J. Wang, T.F. Xie, Phys. Chem. Chem. Phys. 17, 29899–29905 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. N.F. Mott, Proc. Cambridge Philos. Soc. 34, 568–572 (1938)

    Article  ADS  CAS  Google Scholar 

  20. W. Schottky, Z. Phys. 113, 367–414 (1939)

    Article  ADS  CAS  Google Scholar 

  21. T.A. Kandiel, M.G. Ahmed, A.Y. Ahmed, J. Phys. Chem. Lett. 11, 5015–5020 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. J. Yu, Y. Zhang, A. Kudo, J. Solid State Chem. 182, 223–228 (2009)

    Article  ADS  CAS  Google Scholar 

  23. L. Zhang, C.G. Niu, G.X. Xie, X.J. Wen, X.G. Zhang, G.M. Zeng, ACS Sustain. Chem. Eng. 5, 4619–4629 (2017)

    Article  CAS  Google Scholar 

  24. H. He, S.P. Berglund, P. Xiao, W.D. Chemelewski, Y. Zhang, C.B. Mullins, J. Mater. Chem. A 1, 12826 (2013)

    Article  CAS  Google Scholar 

  25. Y. Zhang, T. Mori, J. Ye, M. Antonietti, J. Am. Chem. Soc. 132, 6294–6295 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. R. Chen, Z.R. Shen, H. Wang, H.J. Zhou, Y.P. Liu, D.T. Ding, T.H. Chen, J. Alloys Compd. 509, 2588–2596 (2011)

    Article  CAS  Google Scholar 

  27. P. Guan, H. Bai, F. Wang, H. Yu, D. Xu, W. Fan, W. Shi, Chem. Eng. J. 358, 658–665 (2019)

    Article  CAS  Google Scholar 

  28. T.W. Kim, K.S. Choi, Science 343, 990–994 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. S. Sultana, S. Mansingh, K.M. Parida, J. Phys. Chem. C 122, 808–819 (2017)

    Article  Google Scholar 

  30. H. Zhao, X. Liu, Y. Dong, H. Li, R. Song, Y. Xia, H. Wang, J. Chem. 43, 13929–13937 (2019)

    CAS  Google Scholar 

  31. S. Nathan, Lewis lnorg. Chem. 44, 6900–6911 (2005)

    Article  Google Scholar 

  32. Y. He, R. Chen, W. Fa, B. Zhang, D. Wang, J. Chem. Phys. 151, 130902 (2019)

    Article  ADS  PubMed  Google Scholar 

  33. R.P. Antony, P.S. Bassi, F.F. Abdi, S.Y. Chiam, Y. Ren, J. Barber, J.S.C. Loo, L.H. Wong, Electrochim. Acta 211, 173–182 (2016)

    Article  CAS  Google Scholar 

  34. X. Lv, K. Nie, H. Lan, X. Li, Y. Li, X. Sun, J. Zhong, S.T. Lee, Nano Energy 32, 526–532 (2017)

    Article  CAS  Google Scholar 

  35. H. She, P. Yue, X. Ma, J. Huang, L. Wang, Q. Wang, Appl. Catal. B-Environ. 263, 118280 (2020)

    Article  CAS  Google Scholar 

  36. C. Li, W. Fan, H. Lu, Y. Ge, H. Bai, W.J. Shi, New J. Chem. 40, 2287–2295 (2016)

    Article  CAS  Google Scholar 

  37. C. Ma, J. Lee, Y. Kim, W.C. Seo, H. Jung, W. Yang, J. Colloid Interface Sci. 581, 514–522 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. B.H. Meekins, P.V. Kamat, ACS Nano 3, 3437–3446 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. H. Wang, Z. Shi, S. Yan, Z. Zou, Appl. Phys. Lett. 114, 132105 (2019)

    Article  ADS  Google Scholar 

  40. F. Li, J. Li, J. Zhang, L. Gao, X. Long, Y. Hu, S. Li, J. Jin, J. Ma, Chemsuschem 11, 2156–2164 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. Y. Lin, Y. Xu, M.T. Mayer, Z.I. Simpson, G. McMahon, S. Zhou, D. Wang, J. Am. Chem. Soc. 134, 5508–5511 (2012)

    Article  CAS  PubMed  Google Scholar 

  42. M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, J. Am. Chem. Soc. 137, 5053–5060 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. T. Zhou, S. Chen, J. Wang, Y. Zhang, J. Li, J. Bai, B. Zhou, Chem. Eng. J. 403, 126350 (2021)

    Article  CAS  Google Scholar 

  44. H. Hou, H. Liu, F. Gao, M. Shang, L. Wang, Xu. Linli, W.-Y. Wong, W. Yang, Electrochim. Acta 283, 497–508 (2018)

    Article  CAS  Google Scholar 

  45. J.H. Kim, J.S. Lee, Adv. Mater. 31, 1806938 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No. 11747069) and the Foundation of Henan Educational Committee (No. 23A140007) for this research.

Funding

This work was funded by Innovative Research Group Project of the National Natural Science Foundation of China (Grant No. 11747069) and Foundation of Henan Educational Committee (Grant No. 23A140007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1278 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, J., Cheng, Y., Shen, X. et al. Modulating surface-state-induced band bending for efficient charge transport and photoelectrochemical hydrogen production over bismuth vanadate photoanode. J Mater Sci: Mater Electron 35, 276 (2024). https://doi.org/10.1007/s10854-024-12027-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12027-3

Navigation