Skip to main content
Log in

Modulation of dielectric properties of bismaleimide laminates by hyperbranched polyimides with different structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

5G communications offer high-speed transmission, low latency and high interconnect density, which requires widely used 5G devices fabricated with low dielectric constant, low loss at high frequency, high thermal conductivity, good heat resistance and high reliability, among other characteristics. In this work, hyperbranched polyimide (HBPI) was prepared by a one-step process using hexamethylenediisocyanate trimer (HDI) and toluene diisocyanate trimer (TDI) as cores and coated with methylnaldehyde. A new type of laminate was prepared using a hyperbranched polyimide resin modified with bismaleimide as the matrix resin. The hyperbranched structure of HBPI was characterised by nuclear magnetic resonance and FT-IR techniques. Dielectric property tests showed that HBPI can reduce the dielectric constant (Dk) and dielectric loss of the laminate. At 107 Hz, the dielectric constant of BMI-HBPI (HDI) laminate is 3.349 and the dielectric loss is 0.0018; the dielectric constant of BMI-HBPI (TDI) laminate is 3.501 and the dielectric loss is 0.00119. The reduction of Dk is achieved by increasing the free volume fraction in the system or reducing the content of polarisable functional groups in the system. Insulation and mechanical tests showed that the laminate has good performance characteristics, and its breakdown field strength, bending strength and fire resistance meet the requirements for copper-clad laminate of electronic class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

I warrant that the data in this thesis are the result of original experiments and are being used for the first time.

References

  1. X. Chen, G. Liang, A. Gu, Ind. Eng. Chem. Res. 54, 1806–1815 (2015)

    Article  CAS  Google Scholar 

  2. Y. Zhang, Z. Liu, X. Zhang, Ind. Eng. Chem. Res. 60, 11749–11759 (2021)

    Article  CAS  Google Scholar 

  3. N. Karaca, High Perform. Polym. 35, 581–592 (2023)

    Article  CAS  Google Scholar 

  4. B. Wu, X. Mao, Y. Xu, Appl. Surf. Sci. 544, 148911 (2021)

    Article  CAS  Google Scholar 

  5. X. Xiong, R. Ren, P. Chen, J. Appl. Polym. Sci. 130, 1084–1091 (2013)

    Article  Google Scholar 

  6. Y.-F. Duann, B.L. Chen, T.H. Tsai, J. Appl. Polym. Sci. 95, 1485–1492 (2005)

    Article  CAS  Google Scholar 

  7. Y.H. Kim, Y.-W. Lim, Y.H. Kim, ACS Appl. Mater. Interfaces 8, 8335–8340 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. S.P. Rwei, Y.T. Lin, S.K. Yeh, Text. Res. J. 85, 524–534 (2014)

    Article  Google Scholar 

  9. X. Hu, B. Deng, L. Fan, Mech. Compos. Mater. 59, 825–836 (2023)

    Article  ADS  CAS  Google Scholar 

  10. R.J. Iredale, C. Ward, I. Hamerton, Prog. Polym. Sci. 69, 1–21 (2017)

    Article  CAS  Google Scholar 

  11. J. Zhuoda, Surf. Interface Anal. 51, 458–464 (2018)

    Article  Google Scholar 

  12. Y. Han, C. Xie, Z. Wu, J. Elastomers Plast. 48, 97–104 (2014)

    Article  Google Scholar 

  13. C. Xie, Y. Han, R. Zhao, Polym. Compos. 37, 468–471 (2014)

    Article  Google Scholar 

  14. G. Li, F. Qu, Z. Wang, Polymers 15, 2275 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  15. K. Raut, P. Mondal, S. Sarkar, J. Polym. Sci. 61, 1870–1881 (2023)

    Article  CAS  Google Scholar 

  16. J.W. Chin, J.P. Wightman, Compos. Part A Appl. Sci. Manuf. 27, 419–428 (1996)

    Article  Google Scholar 

  17. Q. Zou, F. Xiao, S.Q. Gu, Ind. Eng. Chem. Res. 58, 16526–16531 (2019)

    Article  CAS  Google Scholar 

  18. C. Liu, H. Jia, N. Li, Polym. Adv. Technol. 32, 1205–1213 (2020)

    Article  Google Scholar 

  19. Z. Yuan, L. Wang, C. Liu, Polym. Eng. Sci. 63, 1668–1677 (2023)

    Article  CAS  Google Scholar 

  20. T. Gao, B. Gao, Y. Gao, J. Compos. Mater. 57, 2829–2842 (2023)

    Article  ADS  CAS  Google Scholar 

  21. J.P. Yang, Z.K. Chen, G. Yang, Polymer 49, 3168–3175 (2008)

    Article  CAS  Google Scholar 

  22. R. Dash, P. Kommu, N. Kumari, J. Polym. Eng. 43, 199–209 (2022)

    Article  Google Scholar 

  23. C. Qu, L. Shan, G. Zhang, Polymer 285, 126361 (2023)

    Article  CAS  Google Scholar 

  24. J. Frohlich, H. Kautz, R. Thomann, Polymer 45, 2155–2164 (2004)

    Article  Google Scholar 

  25. C.J. Hawker, F.K. Chu, P.J. Pomery, Macromolecules 29, 3831–3838 (1996)

    Article  ADS  CAS  Google Scholar 

  26. Y.D. Zhang, L.M. Wang, T. Wada, Macromolecules 29, 1569–1573 (1996)

    Article  ADS  CAS  Google Scholar 

  27. Z.J. Jiang, L. Yuan, G.Z. Liang, Polym. Degrad. Stab. 121, 30–41 (2015)

    Article  CAS  Google Scholar 

  28. B. Sun, G.Z. Liang, A.J. Gu, Ind. Eng. Chem. Res. 52, 5054–5065 (2013)

    Article  CAS  Google Scholar 

  29. S. Niu, H.X. Yan, S. Li, J. Mater. Chem. C. 4, 6881–6893 (2016)

    Article  CAS  Google Scholar 

  30. Y.Z. Wang, L. Yuan, G.Z. Liang, Ind. Eng. Chem. Res. 54, 5948–5958 (2015)

    Article  CAS  Google Scholar 

  31. J.H. Shi, X.R. Zhang, L. Weng, High Perform. Polym. 33, 695–703 (2021)

    Article  CAS  Google Scholar 

  32. S.C. Peter, J. Williams, J. Farrissey, J. Appl. Polym. Sci. 16, 2983–2989 (1972)

    Article  Google Scholar 

  33. F. Yu, K. Wang, X.Y. Liu, J. Appl. Polym. Sci. 127, 5075–5081 (2013)

    Article  CAS  Google Scholar 

  34. H. Qin, P.T. Mather, J.B. Baek, Polymer 47, 2813–2821 (2006)

    Article  CAS  Google Scholar 

  35. Z. Wang, T. Zhang, J. Wang, Nanomaterials 12, 446 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. C. Pan, J. Zhang, K. Kou, Int. J. Heat Mass Transf. 120, 1–8 (2018)

    Article  CAS  Google Scholar 

  37. C. Pan, K. Kou, Q. Jia, Compos. Part B-Eng. 111, 83–90 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

QW: conceptualization, methodology, formal analysis, writing—original draft. JSC: validation, writing—review & editing. XZ: conceptualization, validation, writing—review & editing, supervision. LW: supervision, project administration. SY: data curation. YW: resources. Ci: data curation.

Corresponding author

Correspondence to Xiaorui Zhang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Ethical approval

In accordance with the code of academic ethics, I undertake the following: I declare that there is no multiple submission of this paper. I will not submit the paper elsewhere until the journal editorial process has been completed. This paper has been completed independently by me under the supervision of my supervisor. To the best of my knowledge, the quoted portions of this paper are cited with attribution, those who have contributed to the paper are stated at the author, and there is no text that infringes intellectual property rights. I accept full responsibility for any breach of intellectual property rights resulting from this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Shi, J., Zhang, X. et al. Modulation of dielectric properties of bismaleimide laminates by hyperbranched polyimides with different structures. J Mater Sci: Mater Electron 35, 300 (2024). https://doi.org/10.1007/s10854-024-12015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12015-7

Navigation