Skip to main content
Log in

Development of MAPbI3.H2O and MAPbI3 perovskite solar cells using TiO2 and P3HT as charge transport layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MAPbI3.H2O and MAPbI3 perovskite based solar cells were investigated using TiO2 and P3HT as charge transport layers at ambient conditions. The transparent conducting oxide, fluorine doped tin oxide, coated glass slide serves as substrate during the cell fabrication process. Spin coating technique was employed to fabricate the cells with compact TiO2 (c-TiO2) and mesoporous TiO2 (m-TiO2) stack as an electron transport layer and P3HT as a hole transport layer. The structures of MAPbI3.H2O and MAPbI3 perovskites were studied by single crystal XRD which confirms that the prepared crystals belong to tetragonal and monoclinic systems respectively. The layer properties of c-TiO2 and m-TiO2 were studied by powder XRD and FESEM analysis. Well defined sharp photoluminescence peaks of MAPbI3.H2O and MAPbI3 perovskites observed at 840 and 781 nm respectively confirm direct band gap nature of the materials. Solar cells were successfully fabricated with controlled growth rate of the various layers. The FESEM cross-section provides information regarding the thickness of each layer in the cell. The dark J–V characteristics of the prepared cells were evaluated as proof of the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Y. Hou, X. Du, S. Scheiner, D.P. McMeekin, Z. Wang, N. Li, M.S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker, E. Spiecker, T. Stubhan, N.A. Luechinger, A. Hirsch, P. Schmuki, H.-P. Steinrück, R.H. Fink, M. Halik, H.J. Snaith, C.J. Brabec, Science 358, 1192–1197 (2017)

    CAS  PubMed  ADS  Google Scholar 

  2. M.D. McGehee, Nat. Mater. 13, 845–846 (2014)

    CAS  PubMed  ADS  Google Scholar 

  3. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341–344 (2013)

    CAS  PubMed  ADS  Google Scholar 

  4. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347, 967–970 (2015)

    CAS  PubMed  ADS  Google Scholar 

  5. T.J. Savenije, C.S. Ponseca Jr., L. Kunneman, M. Abdellah, K. Zheng, Y. Tian, Q. Zhu, S.E. Canton, I.G. Scheblykin, T. Pullerits, A. Yartsev, V. Sundström, J. Phys. Chem. Lett. 5, 2189–2194 (2014)

    CAS  PubMed  Google Scholar 

  6. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie, Prog. Photovolt. 27, 3–12 (2019)

    Google Scholar 

  7. F. Wang, M. Yang, Y. Zhang, J. Du, D. Han, L. Yang, L. Fan, Y. Sui, Y. Sun, X. Meng, J. Yang, Chem. Eng. J. 402, 126303 (2020)

    CAS  Google Scholar 

  8. J. Lian, B. Lu, F. Niu, P. Zeng, X. Zhan, Small Methods 2, 1800082 (2018)

    Google Scholar 

  9. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 354, 206–209 (2016)

    CAS  PubMed  ADS  Google Scholar 

  10. B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 6, 1543–1547 (2015)

    CAS  PubMed  Google Scholar 

  11. Q.-D. Dao, R. Tsuji, A. Fujii, M. Ozaki, Org. Electron. 43, 229–234 (2017)

    CAS  Google Scholar 

  12. G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 3, 8970–8980 (2015)

    CAS  Google Scholar 

  13. L. Shi, T.L. Young, J. Kim, Y. Sheng, L. Wang, Y. Chen, Z. Feng, M.J. Keevers, X. Hao, P.J. Verlinden, M.A. Green, A.W.Y. Ho-Baillie, ACS Appl. Mater. Interfaces 9, 25073–25081 (2017)

    CAS  PubMed  Google Scholar 

  14. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897–903 (2014)

    CAS  PubMed  ADS  Google Scholar 

  15. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano Lett. 13, 1764–1769 (2013)

    CAS  PubMed  ADS  Google Scholar 

  16. M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 7, 167–172 (2016)

    CAS  PubMed  Google Scholar 

  17. O.A. Syzgantseva, M. Saliba, M. Grätzel, U. Rothlisberger, J. Phys. Chem. Lett. 8, 1191–1196 (2017)

    CAS  PubMed  Google Scholar 

  18. Z. Yang, C.C. Chueh, P.W. Liang, M. Crump, F. Lin, Z. Zhu, A.K.Y. Jen, Nano Energy 22, 328–337 (2016)

    CAS  Google Scholar 

  19. Z. Chen, B. Turedi, A.Y. Alsalloum, C. Yang, X. Zheng, I. Gereige, A. AlSaggaf, O.F. Mohammed, O.M. Bakr, ACS Energy Lett. 4, 1258–1259 (2019)

    CAS  Google Scholar 

  20. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050–6051 (2009)

    CAS  PubMed  Google Scholar 

  21. V. Mansfeldova, M. Zlamalova, H. Tarabkova, P. Janda, M. Vorokhta, L. Piliai, L. Kavan, J. Phys. Chem. C 125, 1902–1912 (2021)

    CAS  Google Scholar 

  22. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Science 356, 1376–1379 (2017)

    CAS  PubMed  ADS  Google Scholar 

  23. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Sci. Rep. 2, 591 (2012)

    PubMed  PubMed Central  Google Scholar 

  24. H.K. Adli, T. Harada, W. Septina, S. Hozan, S. Ito, S. Ikeda, J. Phys. Chem. C 119, 22304–22309 (2015)

    CAS  Google Scholar 

  25. Z.H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T.M. Brown, R. Jose, Nano Energy 34, 271–305 (2017)

    CAS  Google Scholar 

  26. F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S.M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 131, 558–562 (2009)

    CAS  PubMed  Google Scholar 

  27. H.J. Snaith, M. Grätzel, Appl. Phys. Lett. 89, 262114 (2006)

    ADS  Google Scholar 

  28. W.H. Nguyen, C.D. Bailie, E.L. Unger, M.D. McGehee, J. Am. Chem. Soc. 136, 10996–11001 (2014)

    CAS  PubMed  Google Scholar 

  29. M.T. Dang, L. Hirsch, G. Wantz, Adv. Mater. 23, 3597–3602 (2011)

    CAS  PubMed  Google Scholar 

  30. R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Mater. Today 15, 36–49 (2012)

    Google Scholar 

  31. G.W. Kim, G. Kang, M. MalekshahiByranvand, G.Y. Lee, T. Park, ACS Appl. Mater. Interfaces 9, 27720–27726 (2017)

    CAS  PubMed  Google Scholar 

  32. E. Edri, S. Kirmayer, D. Cahen, G. Hodes, J. Phys. Chem. Lett. 4, 897–902 (2013)

    CAS  PubMed  Google Scholar 

  33. F. Di Giacomo, S. Razza, F. Matteocci, A. D’Epifanio, S. Licoccia, T.M. Brown, A. Di Carlo, J. Power. Sources 251, 152–156 (2014)

    Google Scholar 

  34. J. Xiao, J. Shi, H. Liu, Y. Xu, S. Lv, Y. Luo, D. Li, Q. Meng, Y. Li, Adv. Energy Mater. 5, 1401943 (2015)

    Google Scholar 

  35. S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Nano Lett. 14, 5561–5568 (2014)

    CAS  PubMed  ADS  Google Scholar 

  36. N.Y. Nia, F. Matteocci, L. Cina, A. Di Carlo, Chemsuschem 10, 3854–3860 (2017)

    CAS  PubMed  Google Scholar 

  37. P. Zhou, T. Bu, S. Shi, L. Li, Y. Zhang, Z. Ku, Y. Peng, J. Zhong, Y.-B. Cheng, F. Huang, J. Mater. Chem. C 6, 5733–5737 (2018)

    CAS  Google Scholar 

  38. Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, E. Nakamura, J. Mater. Chem. A 2, 13827–13830 (2014)

    CAS  Google Scholar 

  39. N. Sivakumar, S. Saha, R. Madaka, N. Bandaru, J.K. Rath, J. Mater. Sci. Mater. Electron. 34, 1193 (2023)

    CAS  Google Scholar 

  40. J.M. Kadro, K. Nonomura, D. Gachet, M. Grätzel, A. Hagfeldt, Sci. Rep. 5, 11654 (2015)

    PubMed  PubMed Central  ADS  Google Scholar 

  41. Q.-D. Dao, A. Fujii, R. Tsuji, N.H. Pham, H. Van Bui, C.D. Sai, D.T. Nguyen, T.H. Vu, M. Ozaki, Thin Solid Films 732, 138768 (2021)

    CAS  ADS  Google Scholar 

  42. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, J. Mater. Chem. A 1, 5628–5641 (2013)

    CAS  Google Scholar 

  43. S. Na-Phattalung, M.F. Smith, K. Kim, M.H. Du, S.H. Wei, S.B. Zhang, S. Limpijumnong, Phys. Rev. B Condens. Matter 73, 125205 (2006)

    ADS  Google Scholar 

  44. A. Dobrovolsky, A. Merdasa, J. Li, K. Hirselandt, E.L. Unger, I.G. Scheblykin, J. Phys. Chem. Lett. 11, 1714–1720 (2020)

    CAS  PubMed  Google Scholar 

  45. Z. Andaji-Garmaroudi, M. Anaya, A.J. Pearson, S.D. Stranks, Adv. Energy Mater. 10, 1903109 (2020)

    CAS  ADS  Google Scholar 

  46. C.C. Stoumpos, D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli, J.I. Jang, J.T. Hupp, M.G. Kanatzidis, Chem. Mater. 28, 2852–2867 (2016)

    CAS  Google Scholar 

  47. C.C. Stoumpos, C.M.M. Soe, H. Tsai, W. Nie, J.C. Blancon, D.H. Cao, F. Liu, B. Traore, C. Katan, J. Even, A.D. Mohite, M.G. Kanatzidis, Chemistry 2, 427–440 (2017)

    CAS  Google Scholar 

  48. Y.D. Glinka, R. Cai, X. Gao, D. Wu, R. Chen, X.W. Sun, AIP Adv. 10, 065028 (2020)

    CAS  ADS  Google Scholar 

  49. L.M. Herz, Annu. Rev. Phys. Chem. 67, 65–89 (2016)

    CAS  PubMed  ADS  Google Scholar 

  50. A.M. Abdul Hussien, H.T. Hussein, U.M. Nayef, M.H. Mahdi, Optik 193, 163015 (2019)

    CAS  ADS  Google Scholar 

  51. Q. Li, Z. Chen, I. Tranca, S. Gaastra-Nedea, D. Smeulders, S. Tao, Appl. Sur. Sci. 538, 148058 (2021)

    CAS  Google Scholar 

  52. N.Z. Koocher, D. Saldana-Greco, F. Wang, S. Liu, A.M. Rappe, J. Phys. Chem. Lett. 6, 4371–4378 (2015)

    CAS  PubMed  Google Scholar 

  53. D. Wang, M. Wright, N.K. Elumalai, A. Uddin, Sol. Energy Mater. Sol. 147, 255–275 (2016)

    CAS  Google Scholar 

  54. J. Ye, X. Li, J. Zhao, X. Meia, Q. Li, RSC Adv. 6, 36356 (2016)

    CAS  ADS  Google Scholar 

  55. M. Mehrabian, E.N. Afshar, Bull. Mater. Sci. 44, 266 (2021)

    CAS  Google Scholar 

  56. S. Dae-Yong, K. Seul-Gi, S. Ja-Young, L. Seon-Hee, S. Hyunjung, L. Donghwa, N.G. Park, J. Am. Chem. Soc. 140(4), 1358–1364 (2018)

    Google Scholar 

  57. Q. Han, S.H. Bae, P. Sun, Y.T. Hsieh, Y.M. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yang, Adv. Mater. 28, 2253–2258 (2016)

    CAS  PubMed  Google Scholar 

  58. G.J. Wetzelaer, M. Scheepers, A.M. Sempere, C. Momblona, J. Ávila, H.J. Bolink, Adv. Mater. 27, 1837–1841 (2015)

    CAS  PubMed  Google Scholar 

  59. P. Liao, X. Zhao, G. Li, Y. Shen, M. Wang, NanoMicro Lett. 10, 5 (2017)

    PubMed  PubMed Central  Google Scholar 

  60. J. Chen, J. Xu, L. Xiao, B. Zhang, S.Y. Dai, J.X. Yao, ACS Appl. Mater. Interface 9(3), 2449–2458 (2017)

    CAS  Google Scholar 

  61. H.Y. Zhang, J.J. Shi, X. Xu, L.F. Zhu, Y.H. Luo, D.M. Li, Q.B. Meng, J. Mater. Chem. A 4(40), 15383–15389 (2016)

    CAS  Google Scholar 

  62. W.J. Ke, G.J. Fang, J.W. Wan, H. Tao, Q. Liu, L. Xiong, P. Qin, J. Wang, H. Lei, G. Yang, M. Qin, X. Zhao, Y. Yan, Nat. Commun. 6, 6700 (2015)

    CAS  PubMed  ADS  Google Scholar 

  63. X.A. Cao, E.B. Stokes, P.M. Sandvik, S.F. LeBoeuf, J. Kretchmer, D. Walker, IEEE Electron Device Lett. 23, 535–537 (2002)

    CAS  ADS  Google Scholar 

  64. K. Mayes, A. Yasan, R. McClintock, D. Shiell, S.R. Darvish, P. Kung, M. Razeghi, Appl. Phys. Lett. 84, 1046–1048 (2004)

    CAS  ADS  Google Scholar 

  65. G.A.H. Wetzelaer, M. Kuik, M. Lenes, P.W.M. Blom, Appl. Phys. Lett. 99, 153506 (2011)

    ADS  Google Scholar 

  66. C. Xiong, J. Sun, J. Zhang, Y. Fu, Org. Electron. 78, 105559 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

One of the Authors Dr. N. Sivakumar sincerely acknowledges DST-SERB for providing Research Grant under TARE Scheme (Project Number TAR/2021/000084) and Department of Physics, Indian Institute of Technology Madras (IITM) for providing laboratory facilities. Also, Dr. N. Sivakumar greatly acknowledge Sri Sai Ram Engineering College, Chennai for providing permission and extended support to carried out this research work at IITM. 

Funding

This work was supported by DST-SERB (Grant number TAR/2021/000084) and Department of Physics, Indian Institute of Technology Madras (IITM) for providing laboratory facilities. Author N. Sivakumar has received research support from DST-SERB for providing Research Grant under TARE Scheme.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NS. The first draft of the manuscript was written by NS and all the other authors commented on previous versions of the manuscript. Finally it was validated by JKR. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. Sivakumar.

Ethics declarations

Competing interests

Authors Subhashis Saha, Narendra Bandaru, Jatindra Kumar Rath declare they have no financial interests. Author N. Sivakumar has received research support from DST-SERB for providing Research Grant under TARE Scheme.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, N., Saha, S., Bandaru, N. et al. Development of MAPbI3.H2O and MAPbI3 perovskite solar cells using TiO2 and P3HT as charge transport layers. J Mater Sci: Mater Electron 35, 223 (2024). https://doi.org/10.1007/s10854-024-12010-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12010-y

Navigation