Skip to main content
Log in

Improvement of high-frequency magnetic properties of CoFeB thin film using oblique deposition for spin wave electronic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The use of materials with low damping coefficient and high resonant frequency in spin electronic devices means the fastest and least dissipative information transmission. We report the direct fabrication of 40-nm amorphous Co40Fe40B20 thin films on silicon substrates using magnetron sputtering and investigate the dependence of their high-frequency magnetic properties on oblique deposition. It was observed that, with an increasing inclination angle, the in-plane uniaxial magnetic anisotropy initially increased and then decreased. The phenomenon is attributed to the increased roughness of the film as the oblique deposition angle increases. When the roughness of the film reaches a certain threshold, pinning of magnetic domain walls begins to form, leading to a reduction in in-plane uniaxial magnetic anisotropy. By increasing the sputtering angle to 40° during the deposition, the in-plane uniaxial magnetic anisotropy increased from 24.4 to 554.8 Oe. Furthermore, the high-frequency magnetic properties of the CoFeB amorphous thin films were modulated, extending their resonance frequency from 2.58 to 4.76 GHz while simultaneously reducing the damping factor to 0.025.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. J.R. Hortensius, D. Afanasiev, M. Matthiesen, R. Leenders, R. Citro, A.V. Kimel, R.V. Mikhaylovskiy, B.A. Ivanov, A.D. Caviglia, Nat. Phys. 17(9), 1001–1006 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. B. Dieny, I.L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S.O. Demokritov, J. Akerman, A. Deac, P. Pirro, C. Adelmann, A. Anane, A.V. Chumak, A. Hirohata, S. Mangin, S.O. Valenzuela, M.C. Onbaşlı, M. d’Aquino, G. Prenat, G. Finocchio, L. Lopez-Diaz, R. Chantrell, O. Chubykalo-Fesenko, P. Bortolotti, Nat. Electron. 3(8), 446–459 (2020)

    Article  Google Scholar 

  3. E. Vedmedenko, R. Kawakami, D. Sheka, P. Gambardella, A. Kirilyuk, A. Hirohata, C. Binek, O. Chubykalo-Fesenko, S. Sanvito, B. Kirby, J. Grollier, K. Everschor-Sitte, T. Kampfrath, C.-Y. You, A. Berger, J. Phys. D 53, 453001 (2020)

    Article  CAS  Google Scholar 

  4. J.H. Kwon, S.S. Mukherjee, P. Deorani, M. Hayashi, H. Yang, Appl. Phys. A 111(2), 369–378 (2013)

    Article  CAS  ADS  Google Scholar 

  5. A. Chumak, P. Pirro, A. Serga, M.P. Kostylev, R. Stamps, H. Schultheiss, K. Schultheiss, S. Hermsdoerfer, B. Lägel, P.A. Beck, B. Hillebrands, Appl. Phys. Lett. 95, 262508 (2009)

    Article  ADS  Google Scholar 

  6. A. Conca, J. Greser, T. Sebastian, S. Klingler, B. Obry, B. Leven, B. Hillebrands, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4808462

    Article  Google Scholar 

  7. K. Yamanoi, S. Yakata, T. Kimura, T. Manago, Jpn. J. Appl. Phys. 52(8R), 083001 (2013)

    Article  ADS  Google Scholar 

  8. G. Gubbiotti, A. Sadovnikov, E. Beginin, S. Nikitov, D. Wan, A. Gupta, S. Kundu, G. Talmelli, R. Carpenter, I. Asselberghs, I.P. Radu, C. Adelmann, F. Ciubotaru, Phys. Rev. Appl. 15(1), 014061 (2021)

    Article  CAS  ADS  Google Scholar 

  9. R.L. Stamps, S. Breitkreutz, J. Åkerman, A.V. Chumak, Y. Otani, G.E.W. Bauer, J.-U. Thiele, M. Bowen, S.A. Majetich, M. Kläui, I.L. Prejbeanu, B. Dieny, N.M. Dempsey, B. Hillebrands, J. Phys. D 47(33), 333001 (2014)

    Article  ADS  Google Scholar 

  10. G. Awana, C. Cox, L. Stuffins, G. Venkat, K. Morrison, Z. Zhou, D. Backes, Mater. Res. Express. 7(10), 106406 (2020)

    Article  CAS  Google Scholar 

  11. C. Bilzer, T. Devolder, J.-V. Kim, G. Counil, C. Chappert, S. Cardoso, P.P. Freitas, J. Appl. Phys. (2006). https://doi.org/10.1063/1.2337165

    Article  Google Scholar 

  12. J.-S. Kim, G. Kim, J. Jung, K. Jung, J. Cho, W.-Y. Kim, C.-Y. You, Sci. Rep. 12(1), 4549 (2022)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. R. O’Dell, A. Phillips, D. Georgiev, J. Jones, G. Brown, M. Heben, IEEE Trans. Magn. 54, 1–7 (2018)

    Article  Google Scholar 

  14. K. Sriram, J. Pala, R. Mondal, B. Paikaray, K. Jain, G.A. Basheed, A. Haldar, C. Murapaka, J. Supercond. Nov. Magn. 36(1), 155–162 (2023)

    Article  CAS  Google Scholar 

  15. O. Acher, A.L. Adenot, Phys. Rev. B 62(17), 11324–11327 (2000)

    Article  CAS  ADS  Google Scholar 

  16. R.L. Seeger, F. Millo, A. Mouhoub, G. de Loubens, A. Solignac, T. Devolder, Phys. Rev. Mater. 7(5), 054409 (2023)

    Article  CAS  Google Scholar 

  17. Y. Ren, X. Li, Y. Wang, J. Ren, Y. Zhang, B. Dai, H. Yan, G. Sun, S. Peng, Sci. Rep. 6(1), 31773 (2016)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. C. Fowley, V. Sluka, K. Bernert, J. Lindner, J. Fassbender, W.H. Rippard, M.R. Pufall, S.E. Russek, A.M. Deac, Appl. Phys. Express 7(4), 043001 (2014)

    Article  CAS  ADS  Google Scholar 

  19. E. Kowalska, A. Kákay, C. Fowley, V. Sluka, J. Lindner, J. Fassbender, A.M. Deac, J. Appl. Phys. (2019). https://doi.org/10.1063/1.5081036

    Article  Google Scholar 

  20. Z. Zeng, G. Finocchio, B. Zhang, P.K. Amiri, J.A. Katine, I.N. Krivorotov, Y. Huai, J. Langer, B. Azzerboni, K.L. Wang, H. Jiang, Sci. Rep. 3(1), 1426 (2013)

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  21. C. Li, G. Chai, C. Yang, W. Wang, D. Xue, Sci. Rep. 5(1), 17023 (2015)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. M. Raju, S. Chaudhary, D.K. Pandya, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4817653

    Article  Google Scholar 

  23. A.G. Dirks, H.J. Leamy, Thin Solid Films 47(3), 219–233 (1977)

    Article  CAS  ADS  Google Scholar 

  24. M. Li, Y. Zhao, G.C. Wang, H.G. Min, J. Appl. Phys. 83, 6287–6289 (1998)

    Article  CAS  ADS  Google Scholar 

  25. A. Al-Qawasmeh, M.H.A. Badarneh, A. Obeidat, S. Abedrabbo, J. Magn. Magn. Mater. 562, 169734 (2022)

    Article  CAS  Google Scholar 

  26. T.L. Gilbert, IEEE Trans. Magn. 40(6), 3443–3449 (2004)

    Article  CAS  ADS  Google Scholar 

  27. S.S. Kalarickal, P. Krivosik, M. Wu, C.E. Patton, M.L. Schneider, P. Kabos, T.J. Silva, J.P. Nibarger, J. Appl. Phys. (2006). https://doi.org/10.1063/1.2197087

    Article  Google Scholar 

  28. D.-S. Xue, F.-S. Li, X.-L. Fan, F.-S. Wen, Chin. Phys. Lett. 25(11), 4120 (2008)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF of China (Grant No. 12335018) and funded by the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (Grant No. 21fksy27, 22fksy26).

Author information

Authors and Affiliations

Authors

Contributions

JL contributed to conceptualization, investigation, and writing of the original draft. YZ and YZ contributed to investigation and validation. YR and BD provided resources. MC contributed to conceptualization, writing, reviewing, and editing of the manuscript, supervision, and project administration.

Corresponding authors

Correspondence to Yong Ren or Min Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhang, Y., Zhang, Y. et al. Improvement of high-frequency magnetic properties of CoFeB thin film using oblique deposition for spin wave electronic devices. J Mater Sci: Mater Electron 35, 281 (2024). https://doi.org/10.1007/s10854-024-12005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12005-9

Navigation