Skip to main content
Log in

Dielectric tunable properties of Ba0.5Sr0.5TiO3–Li2Mg3TiO6–Mg2TiO4 composite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

50Ba0.5Sr0.5TiO3–(50 − x)Li2Mg3TiO6xMg2TiO4 ternary ferroelectric-dielectric composite ceramics were prepared by the conventional solid-phase reaction method. The effect of Mg2TiO4 content on the structural characteristics and dielectric tunable properties of composite ceramics were researched. X-ray diffraction (XRD) analysis showed that Ba0.5Sr0.5TiO3, Li2Mg3TiO6 and Mg2TiO4 phases existed in the composite ceramics. The composite ceramics exhibit a broadened dielectric permittivity plateau region. Increasing the content of Mg2TiO4 led to an increase in dielectric permittivity and tunability of 50Ba0.5Sr0.5TiO3–(50 − x)Li2Mg3TiO6xMg2TiO4 composite: the content of Mg2TiO4 increased from 5 to 40 wt%, the dielectric permittivity increased from 183 to 329, and the tunability under 3 kV/mm increased from 7 to 17.6%. The dielectric properties of Ba0.5Sr0.5TiO3–Li2Mg3TiO6–Mg2TiO4 are comparable to those of the corresponding Ba0.5Sr0.5TiO3–Mg2TiO4 system, and the sintering temperature was reduced by 140 °C. The Ba0.5Sr0.5TiO3–Li2Mg3TiO6–Mg2TiO4 system composite ceramics are promising candidate materials for tunable microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, N. Setter, J. Electroceram. 11, (2003)

  2. A. Ahmed, I.A. Goldthorpe, A.K. Khandani, Appl. Phys. Rev. 2, 011302 (2015)

    Article  ADS  Google Scholar 

  3. J.B.L. Rao, D.P. Patel, V. Krichevsky, IEEE Trans. Antennas Propag. 47, 458 (1999)

    Article  ADS  Google Scholar 

  4. C.H. Lee, N.D. Orloff, T. Birol, Y. Zhu, V. Goian, E. Rocas, R. Haislmaier, E. Vlahos, J.A. Mundy, L.F. Kourkoutis, Y.F. Nie, M.D. Biegalski, J.S. Zhang, M. Bernhagen, N.A. Benedek, Y. Kim, J.D. Brock, R. Uecker, X.X. Xi, V. Gopalan, D. Nuzhnyy, S. Kamba, J.C. Booth, C.J. Fennie, D.G. Schlom, Nature 502, 532 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. O. Lee, S.A. Harrington, A. Kursumovic, E. Defay, H.Y. Wang, Z.X. Bi, C.F. Tsai, L. Yan, Q.X. Jia, J.L. MacManus-Driscoll, Nano Lett. 12, 4311 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. L.C. Sengupta, S. Sengupta, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 44, 792 (1997)

    Article  Google Scholar 

  7. L.C. Sengupta, S. Sengupta, Mater. Res. Innov. 2, 278 (1999)

    Article  CAS  Google Scholar 

  8. W. Chang, L.C. Sengupta, J. Appl. Phys. 92, 3941 (2002)

    Article  ADS  CAS  Google Scholar 

  9. X.J. Chou, J.W. Zhai, X. Yao, Appl. Phys. Lett. 91, 122908 (2007)

    Article  ADS  Google Scholar 

  10. A.B. Kozyrev, A.D. Kanareykin, E.A. Nenasheva, V.N. Osadchy, D.M. Kosmin, Appl. Phys. Lett. 95, 012908 (2009)

    Article  ADS  Google Scholar 

  11. E.A. Nenasheva, N.F. Kartenko, I.M. Gaidamaka, O.N. Trubitsyna, S.S. Redozubov, A.I. Dedyk, A.D. Kanareykin, J. Eur. Ceram. Soc. 30, 395 (2010)

    Article  CAS  Google Scholar 

  12. M. Lei, Z.J. Feng, Z. He, B.X. Liu, Y.Y. He, B.Y. Li, Y.B. Xu, Ceram. Int. 41, 8791 (2015)

    Article  CAS  Google Scholar 

  13. Y.Y. He, Y.K. Peng, Y.B. Xu, J. Am. Ceram. Soc. 102, 2706 (2019)

    Article  CAS  Google Scholar 

  14. Y.Y. He, J.Y. Zhao, Y.B. Xu, C.N. Li, J. Am. Ceram. Soc. 96, 1203 (2013)

    Article  CAS  Google Scholar 

  15. Y.Y. He, Y.B. Xu, T. Liu, C.L. Zeng, W.P. Chen, IEEE Trans. Ultrason. Ferroelectrics Freq. Contr. 57, 1505 (2010)

    Article  Google Scholar 

  16. X. Aupi, J. Breeze, N. Ljepojevic, L.J. Dunne, N. Malde, A.K. Axelsson, N.M. Alford, J. Appl. Phys. 95, 2639 (2004)

    Article  ADS  CAS  Google Scholar 

  17. C.X. Yang, H.Q. Zhou, M. Liu, T. Qiu, J. Mater. Sci.: Mater. Electron. 18, 985 (2007)

    CAS  Google Scholar 

  18. J.D. Cui, G.X. Dong, Z.M. Yang, J. Du, J. Alloys Compd. 490, 353 (2010)

    Article  CAS  Google Scholar 

  19. M. Castellanos, A.R. West, J. Mater. Sci. 14, 450 (1979)

    Article  ADS  CAS  Google Scholar 

  20. J.J. Bian, Y.F. Dong, J. Eur. Ceram. Soc. 30, 325 (2010)

    Article  CAS  Google Scholar 

  21. Z.F. Fu, P. Liu, J.L. Ma, X.M. Chen, H.W. Zhang, Mater. Lett. 164, 436 (2016)

    Article  CAS  Google Scholar 

  22. H.T. Wu, E.S. Kim, RSC Adv. 6, 47443 (2016)

    Article  ADS  CAS  Google Scholar 

  23. H.F. Zhou, X.H. Tan, J. Huang, N. Wang, G.H. Fan, X.L. Chen, J. Alloy Compd. 696, 1255 (2017)

    Article  CAS  Google Scholar 

  24. Z.X. Fu, Z.B. Xu, C. Liu, N.N. Song, Y.B. Xu, J. Mater. Sci.: Mater. Electron. 34, 541 (2023)

    CAS  Google Scholar 

  25. Y.D. Zhang, D. Zhou, J. Am. Ceram. Soc. 99, 3645 (2016)

    Article  CAS  Google Scholar 

  26. A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 89, 3441 (2006)

    Article  CAS  Google Scholar 

  27. Y.Y. He, Y.K. Peng, X.M. Ma, Y.B. Xu, Materialia. 5, 100217 (2019)

    Article  CAS  Google Scholar 

  28. Z. He, B.X. Liu, C.N. Li, Y.Y. He, C.L. Zeng, B.Y. Li, Y.Z. Sun, Y.B. Xu, Ceram. Int. 41, 6286 (2015)

    Article  CAS  Google Scholar 

  29. Y. Somiya, A.S. Bhalla, L.E. Cross, Ferroelectrics. 400, 165 (2010)

    Article  ADS  CAS  Google Scholar 

  30. T. Maiti, R. Guo, A.S. Bhalla, Ferroelectrics. 361, 84 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China under grant numbers 61671214 and 61401152. The authors wish to acknowledge the Analytical and Testing Center in Huazhong University of Science and Technology for XRD and ESEM analysis.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by NS, ZX, ZF, and CL. The first draft of the manuscript was written by YX and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yebin Xu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Xu, Z., Fu, Z. et al. Dielectric tunable properties of Ba0.5Sr0.5TiO3–Li2Mg3TiO6–Mg2TiO4 composite ceramics. J Mater Sci: Mater Electron 35, 256 (2024). https://doi.org/10.1007/s10854-024-12002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12002-y

Navigation