Skip to main content
Log in

Optical characteristics and solar cell performance of (MAPbBr3)x ((MACl)0.28FA0.98Cs0.02PbI3)1−x with various composition ratios

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Perovskite solar cells were prepared using (MAPbBr3)x ((MACl)0.28FA0.98Cs0.02PbI3)1−x, (x = 0, 0.05, and 0.07) perovskite layers. The effect of the MAPbBr3 amount on the formed phases and lattice parameters of the formed perovskite films was explored using the X-ray diffraction technique. The addition of MAPbBr3 to the formed films resulted in an increase in the grain size from 52 to 68 nm. A method that accounts for the interference phenomenon was applied for retrieving the optical constants from the interference fringes of the reflectance spectra of the different samples. The direct optical band gap was decreased from 1.45 eV to a minimum value of 1.34 eV as MAPbBr3 was added to the perovskite film. In the visible range, the refractive index value of the film with 5% MAPbBr3 is slightly larger than that of the film with 7% MAPbBr3. The effect of adding MAPbBr3 on the reflectance, extinction coefficient, refractive index, dielectric constant, loss energy functions, nonlinear optical parameters, and emitted photoluminescence spectra of the different films was investigated using the UV − Vis’ spectroscopy technique. The cell without MAPbBr3 exhibited an open circuit voltage (Voc) of 0.826 V, a short current density (Jsc) of 22.40 mA/cm2, a fill factor (FF) of 64.5%, and power conversion efficiency (PCE) of 11.79% while the cell with 5% MAPbBr3 exhibited the highest PCE of 17.24% with a VOC of 1.010 V, a JSC of 23.59 mA/cm2, and a FF of 72.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. X. Hu, C. Liu, Z. Zhang, X.-F. Jiang, J. Garcia, C. Sheehan, L. Shui, S. Priya, G. Zhou, S. Zhang, K. Wang, Adv. Sci. 7(16), 2001285 (2020)

    CAS  Google Scholar 

  2. A. Hossain, P. Bandyopadhyay, A. Karmakar, A.K.M.A. Ullah, R.K. Manavalan, K. Sakthipandi, N. Alhokbany, S.M. Alshehri, J. Ahmed Ceramics International. 48, 7325 (2022)

    CAS  Google Scholar 

  3. A.S.R. Bati, Y.L. Zhong, P.L. Burn, M.K. Nazeeruddin, P.E. Shaw, MBatmunkh Commun. Mater. 4, 2 (2023)

    ADS  CAS  Google Scholar 

  4. G. Yang, H. Zhang, G.L.G. Fang, Nano Energy. 63, 103835 (2019)

    CAS  Google Scholar 

  5. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 982 (2014)

    CAS  Google Scholar 

  6. Y. Li, F.Z. Liu, M. Waqas, T.L. Leung, H.W. Tam, X.Q. Lan, B. Tu, W. Chen, A.B. Djurišić, Z.B. He, Small Methods. 2, 1700387 (2018)

    Google Scholar 

  7. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry, K. Zhu, Chem. Mater. 28, 284 (2015)

    Google Scholar 

  8. J.S. Yun, J. Kim, T. Young, R.J. Patterson, D. Kim, J. Seidel, S. Lim, M.A. Green, S. Huang, A. Ho-Baillie, Adv. Funct. Mater. 28, 1705363 (2018)

    Google Scholar 

  9. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Nature. 517, 476 (2015)

    ADS  CAS  PubMed  Google Scholar 

  10. L.-C. Chen, Z.-L. Tseng, J.-K. Huang, Nanomaterials. 6, 183 (2016)

    PubMed  PubMed Central  Google Scholar 

  11. S.-H. Turren-Cruz, A. Hagfeldt, M. Saliba, Science. 362, 449 (2018)

    ADS  CAS  PubMed  Google Scholar 

  12. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Energy Environ. Sci. 9, 1989 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. B.J. Kim, G. Boschloo, Nanoscale. 13, 11478 (2021)

    CAS  PubMed  Google Scholar 

  14. L. Zhang, W. Cui, Z. Zang, F. Tian, X. Li, G. Qin, Sol. Energy. 188, 224 (2019)

    ADS  CAS  Google Scholar 

  15. Y. Reyna, M. Salado, S. Kazim, A. Pérez-Tomas, S. Ahmad, M. Lira-Cantu, Nano Energy. 0, 570 (2016)

    CAS  Google Scholar 

  16. H.V. Quy, D.H. Truyen, S. Kim, C.W. Bark, ACS Omega. 6, 16151 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. S.H. Joo, H.W. Choi, Coatings. 11, 1184 (2021)

    CAS  Google Scholar 

  18. Y. Li, T. Zhang, F. Xu, Y. Wang, G. Li, Y. Yang, Y. Zhao, Crystals. 7, 272 (2017)

    Google Scholar 

  19. J.V. Patil, S.S. Mali, J.S. Shaikh, A.P. Patil, P.S. Patil, Dyes Pigment. 168, 311 (2019)

    CAS  Google Scholar 

  20. J. Yi, L. Miao, J. Li, W. Hu, C. Zhao, S. Wen, Opt. Mater. Express. 7(11), 3894 (2017)

    ADS  CAS  Google Scholar 

  21. X. Zhang, S. Xiao, R. Li, T. He, G. Xing, R. Chen, Photonics Res. 8(9), A25 (2020)

    Google Scholar 

  22. A.M. Abu Baker, G.S. Boltaev, M. Iqbal, M. Pylnev, N.M. Hamdan, A.S. Alnaser, Materials. 15(1), 389 (2022)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. A.M. El-naggar, M.M. Osman, Q. Anwar, M.B. Alanazi, M.A. Mohamed, A.M. Ebdah, Z.K. Aldhafiri, H.A. Heiba, Albrithen, Appl. Phys. A 128(5), 1 (2022)

    Google Scholar 

  24. G. Murugadoss, P. Arunachalam, S.K. Panda, M.R. Kumar, J.R. Rajabathar, H. Al-Lohedan, M.D. Wasmiah, J Mater Res Technol 12, 1924 (2021)

    CAS  Google Scholar 

  25. Y. Zhou, M. Yang, J. Kwun, O.S. Game, Y. Zhao, S. Pang, N.P. Padture, Nanoscale 8, 6265 (2016)

    ADS  CAS  PubMed  Google Scholar 

  26. X. Guo, C. McCleese, W. Gao, M. Wang, L. Sang, C. Burda, Mater. Renew. Sustain. Energy. 5, 17 (2016)

    Google Scholar 

  27. N.M. Ahmed, F.A. Sabah, H.I. Abdulgafour, A. Alsadig, A. Sulieman, M. Alkhoaryef, Results in Physics. 13, 102159 (2019)

    Google Scholar 

  28. C. Suryanarayana, M.G. Norton, X-ray Diffraction: A Practical Approach (Plenum Press Publishing, New York, 1998)

    Google Scholar 

  29. B. Himabindu, N.S.M.P.L. Devi, B.R. Kanth, Mater. Today: Proc. 47(14), 4891 (2021)

    CAS  Google Scholar 

  30. D. Nath, F. Singh, R. Das, Mater. Chem. Phys. 239, 122021 (2020)

    CAS  Google Scholar 

  31. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice-Hall, Hoboken, 2001), pp.96–102

    Google Scholar 

  32. S. H.Fang, H. Adjokatse, G.R. Yang, J. Huang, Loi, Advancement of Science. 2(e1600534), 1 (2016)

    Google Scholar 

  33. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Prentice-Hall, Hoboken, 2001)

    Google Scholar 

  34. T. Güngör, B. Saka, Thin Solid Films. 467, 319 (2004)

    ADS  Google Scholar 

  35. E. Márquez, J.M. González-Leal, R. Prieto-Alcón, M. Vlcek, A. Stronski, T. Wagner, D. Minkov, Appl. Phys. A 67, 371 (1998)

    ADS  Google Scholar 

  36. D.B. Kushev, N.N. Zheleva, Y. Demakopoulou, D. Siapkas, Infrared Phys. 26(6), 385 (1986)

    ADS  CAS  Google Scholar 

  37. D.A. Minkov, J. Phys. D: Appl. Phys. 22, 1157 (1989)

    ADS  CAS  Google Scholar 

  38. A.M. El-Naggar, S.Y. El-Zaiat, S.M. Hassan, Opt. Laser Technol. 41(3), 334 (2009)

    ADS  CAS  Google Scholar 

  39. K.A. Aly, A. El-Denglawey, Y.B. Saddeek, A. Dahshan, Phys. B: Condens. Matter. 641, 414080 (2022)

    CAS  Google Scholar 

  40. A. Dahshan, P. Sharma, K.A. Aly, Infrared Phys. Technol. 102, 102997 (2019)

    CAS  Google Scholar 

  41. R. Shakoury, A. Arman, S. Rezaee, A.G. Korpi, S. Kulesza, C. Luna, M. Bramowicz, M. Mardani, J. Mater. Sci: Mater. Electron. 32, 798 (2021)

    CAS  Google Scholar 

  42. M. McClain, A. Feldman, D. Kahaner, X. Ying, Comput. Phys. 5(1), 45 (1991)

    ADS  Google Scholar 

  43. M.A. Khashan, A.M. El-Naggar, Opt. Commun. 174, 445 (2000)

    ADS  CAS  Google Scholar 

  44. J. Tauc, The Optical Properties of Solid, ed. by A. Abeles (North Holland, Amsterdam, 1972), p. 277

    Google Scholar 

  45. W. Xiang, Z. Wang, D.J. Kubicki, X. Wang, W. Tress, J. Luo, J. Zhang, A. Hofstetter, L. Zhang, L. Emsley, M. Grätzel, A. Hagfeldt, Nat. Commun. 10, 4686 (2019)

    ADS  PubMed  PubMed Central  Google Scholar 

  46. S. Rezaee, N. Ghobadi, Results in Physics. 9, 1148 (2018)

    ADS  Google Scholar 

  47. T. Kawashima, H. Yoshikawa, S. Adachi, J. Appl. Phys. 82(7), 3528 (1997)

    ADS  CAS  Google Scholar 

  48. M.B. Mohamed, M.H. Abdel-Kader, Mater. Chem. Phys. 241, 122285 (2020)

    CAS  Google Scholar 

  49. M.S. Alias, I. Dursun, M.I. Saidaminov, E.M. Diallo, P. Mishra, T.K. Ng, O.M. Bakr, B.S. Ooi, Opt. Express. 24, 16586 (2016)

    ADS  CAS  PubMed  Google Scholar 

  50. A.M. El-naggar, M.B. Mohamed, Z.K. Heiba, A.Q. Alanazi, A.M. Kamal, A.A. Albassam, A.M. Aldhafiri, Opt. Quant. Electron. 54(3), 1 (2022)

    Google Scholar 

  51. J.M. Frost, K.T. Butler, F. Brivio, C.H. .Hendon, M. Schilfgaarde, A.Walsh, Nano Lett. 14, 2584 (2014)

    ADS  CAS  Google Scholar 

  52. D.L. Wise, Electrical and optical polymer systems: fundamentals: methods, and applications (CRC Press, Florida, 1998)

    Google Scholar 

  53. N.A. Bakr, A.M. Funde, V.S. .Waman, M.M. Kamble, R.R. .Hawaldar, D.P. Amalnerkar, S.R. Jadkar, Pramana J. Phys. 76, 519 (2011)

    ADS  CAS  Google Scholar 

  54. Y. Nakamura, N. Shibayama, A. Hori, T. Matsushita, H. Segawa, T. Kondo, Inorg. Chem. 56(10), 6709 (2020)

    Google Scholar 

  55. N.G. Horton, K. Wang, D. Kobat, C.G. Clark, F.W. Wise, C.B. Schaffer, C. Xu, Nat. Photonics. 7, 205 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. S.J.K. Pond, O. Tsutsumi, M. Rumi, O. Kwon, E. Zojer, J.-L. Bredas, S.R. Marder, J.W. Perry, J. Am. Chem. Soc. 126, 9291 (2004)

    CAS  PubMed  Google Scholar 

  57. N. Akin, Y. Ozen, H.I. Efkere, M. Cakmak, S. Ozcelik, Surf. Interface Anal. 47, 93 (2015)

    CAS  Google Scholar 

  58. M. Kim, G.-H. Kim, T.K. Lee, I.W. Choi, H.W. Choi, Y. Jo, Y.J. Yoon, J.W. Kim, J. Lee, D. Huh, H. Lee, S.K. Kwak, J.Y. Kim, D.S. Kim, Joule 3, 2179 (2019)

    CAS  Google Scholar 

  59. S.H. Joo, H.W. Choi, Coatings 11(10), 1184 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Researchers Supporting Project number (RSP-2021/72), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed, discussed the results, and approved the final manuscript.

Corresponding authors

Correspondence to A. M. El-naggar, Mohamed Bakr Mohamed or Zein K. Heiba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-naggar, A.M., Osman, M.M., Alanazi, A.Q. et al. Optical characteristics and solar cell performance of (MAPbBr3)x ((MACl)0.28FA0.98Cs0.02PbI3)1−x with various composition ratios. J Mater Sci: Mater Electron 35, 251 (2024). https://doi.org/10.1007/s10854-024-11998-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11998-7

Navigation