Skip to main content
Log in

Dielectric loss and microwave absorbing properties of the prepared MgCu2Nb2O8 composite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

MgCu2Nb2O8 composite ceramics were synthesized by the solid reaction sintering technology. Influences of the sintering temperature on phase composition, microstructure, and microwave absorption properties of the ceramics were investigated. The composite ceramic material exhibited remarkable microwave absorption characteristics, with optimal reflection loss of − 24.7 dB at 17.4 GHz and effective bandwidth of 1.5 GHz. Introduction of different phases in the composite material led to multiple interfaces and defects, enhancing the interface polarization and dipole polarization. Density Functional Theory (DFT) calculations were utilized to explore the mechanisms of dielectric loss. The results demonstrated significant reduction in the density of states (DOS) of the p orbitals near the Fermi level, while DOS of the d orbitals increased, resulting from disruption of local microstructural symmetry and induction of additional electric dipoles at the interfaces. The simulation results are consistent with the experimental results. Consequently, the microwave absorption capacity of the MgCu2Nb2O8 composite ceramics were significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Y. Zhou, C. Yang, R. Li et al., J. Mater. Sci. Mater. Electron. 32, 8788 (2021). https://doi.org/10.1007/s10854-021-05550-0

    Article  CAS  Google Scholar 

  2. C. Chen, L. Pan, S. Jiang et al., J. Eur. Ceram. Soc. 38, 1639 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.052

    Article  CAS  Google Scholar 

  3. S. Bao, Z. Song, R. Mao et al., Journal of Materials Chemistry C 9, 13860 (2021). https://doi.org/10.1039/d1tc02984c

    Article  CAS  Google Scholar 

  4. W. Zhong, B. Li, Z. Ma et al., Carbon 202, 235 (2023). https://doi.org/10.1016/j.carbon.2022.10.086

    Article  CAS  Google Scholar 

  5. W. Zheng, B. Wei, Z. Yao et al., J. Magn. Magn. Mater. 540, 168450 (2021). https://doi.org/10.1016/j.jmmm.2021.168450

    Article  CAS  Google Scholar 

  6. R. Singh, V. Sharma, Adv. Powder Technol. 33, 103724 (2022). https://doi.org/10.1016/j.apt.2022.103724

    Article  CAS  Google Scholar 

  7. W. Zhou, R.-M. Yin, L. Long et al., Ceram. Int. 44, 12301 (2018). https://doi.org/10.1016/j.ceramint.2018.04.017

    Article  CAS  Google Scholar 

  8. W. Duan, X. Yin, Q. Li, L. Schlier, P. Greil, N. Travitzky, J. Eur. Ceram. Soc. 36, 3681 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.002

    Article  CAS  Google Scholar 

  9. C. Wu, Y. Hu, S. Bao et al., RSC Adv. 10, 29835 (2020). https://doi.org/10.1039/d0ra05211f

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Wan, T. Cui, J. Xiao, G. Xiong, R. Guo, H. Luo, J. Alloy. Compd. 687, 334 (2016). https://doi.org/10.1016/j.jallcom.2016.06.147

    Article  CAS  Google Scholar 

  11. X. Liu, C. Feng, S.W. Or et al., RSC Adv. 3, 14590 (2013). https://doi.org/10.1039/C3RA40937F

    Article  ADS  CAS  Google Scholar 

  12. S. Peng, C. Li, C. Tang et al., Materials 15, 8053 (2022). https://doi.org/10.3390/ma15228053

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. S. Peng, C. Li, T. Yan, S. Huang, L. Qiu, L. Deng, Phys. Scr. 98, 095923 (2023). https://doi.org/10.1088/1402-4896/acecbb

    Article  ADS  Google Scholar 

  14. M.-S. Cao, J. Yang, W.-L. Song et al., ACS Appl. Mater. Interfaces 4, 6949 (2012). https://doi.org/10.1021/am3021069

    Article  CAS  PubMed  Google Scholar 

  15. J. Yu, Y. Li, X. Xu, G. Duan, Y. Li, W. Zhou, Compos. Commun. 24, 100643 (2021). https://doi.org/10.1016/j.coco.2021.100643

    Article  Google Scholar 

  16. Y.J. Zhang, C.Y. Liu, X.R. Zhao, M.H. Yao, X.F. Miao, F. Xu, J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2019.165828

    Article  Google Scholar 

  17. S. Ur Rehman, J. Wang, Q. Luo et al., Chem. Eng. J. 373, 122 (2019). https://doi.org/10.1016/j.cej.2019.05.040

    Article  CAS  Google Scholar 

  18. N. Mukherjee, B. Show, S.K. Maji et al., Mater. Lett. 65, 3248 (2011). https://doi.org/10.1016/j.matlet.2011.07.016

    Article  CAS  Google Scholar 

  19. R.P. Vasquez, Surf. Sci. Spectra 5, 262 (1998). https://doi.org/10.1116/1.1247882

    Article  ADS  CAS  Google Scholar 

  20. F. Khairallah, A. Glisenti, Surf. Sci. Spectra 13, 58 (2007). https://doi.org/10.1116/11.20060601

    Article  ADS  CAS  Google Scholar 

  21. J. Xie, C. Zhen, L. Liu et al., Ceram. Int. 47, 11993 (2021). https://doi.org/10.1016/j.ceramint.2021.01.042

    Article  CAS  Google Scholar 

  22. V.V. Atuchin, I.E. Kalabin, V.G. Kesler, N.V. Pervukhina, J. Electron Spectrosc. Relat. Phenom. 142, 129 (2005). https://doi.org/10.1016/j.elspec.2004.10.003

    Article  CAS  Google Scholar 

  23. M.I. Aroyo, A. Kirov, C. Capillas, J.M. Perez-Mato, H. Wondratschek, Acta Crystallogr. A 62, 115 (2006). https://doi.org/10.1107/S0108767305040286

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Y.C. You, H.L. Park, Y.G. Song, H.S. Moon, G.C. Kim, J. Mater. Sci. Lett. 13, 1487 (1994). https://doi.org/10.1007/BF00419143

    Article  CAS  Google Scholar 

  25. Y. Zhang, C. Liu, X. Zhao, M. Yao, X. Miao, F. Xu, J. Magn. Magn. Mater. 494, 165828 (2020). https://doi.org/10.1016/j.jmmm.2019.165828

    Article  CAS  Google Scholar 

  26. M. Kaur, P. Kaur, S. Bahel, Mater. Sci. Eng. B 297, 116736 (2023). https://doi.org/10.1016/j.mseb.2023.116736

    Article  CAS  Google Scholar 

  27. M. Guo, S. Gong, G. Dou, D. Zhou, J. Alloy. Compd. 509, 5988 (2011). https://doi.org/10.1016/j.jallcom.2011.01.095

    Article  CAS  Google Scholar 

  28. S.J. Penn, N.M. Alford, A. Templeton et al., J. Am. Ceram. Soc. 80, 1885 (2005)

    Article  Google Scholar 

  29. Y. Wei, L. Zhang, C. Gong et al., J. Alloy. Compd. 735, 1488 (2018). https://doi.org/10.1016/j.jallcom.2017.11.295

    Article  CAS  Google Scholar 

  30. N. Chen, X.-F. Pan, Z.-J. Guan, Y.-J. Zhang, K.-J. Wang, J.-T. Jiang, Appl. Surf. Sci. 642, 158633 (2024). https://doi.org/10.1016/j.apsusc.2023.158633

    Article  CAS  Google Scholar 

  31. R. Cheng, Y. Wang, X. Di, Z. Lu, P. Wang, X. Wu, J. Mater. Sci. Technol. 129, 15 (2022). https://doi.org/10.1016/j.jmst.2022.04.031

    Article  CAS  Google Scholar 

  32. N. Wang, Y. Wang, Z. Lu, R. Cheng, L. Yang, Y. Li, Carbon 202, 254 (2023). https://doi.org/10.1016/j.carbon.2022.10.083

    Article  CAS  Google Scholar 

  33. H. Zhao, Y. Cheng, Z. Zhang et al., Compos. Part B-Eng. 196, 108119 (2020). https://doi.org/10.1016/j.compositesb.2020.108119

    Article  CAS  Google Scholar 

  34. W. Wang, Y. Wang, Z. Lu, R. Cheng, H. Zheng, Carbon 203, 397 (2023). https://doi.org/10.1016/j.carbon.2022.11.103

    Article  CAS  Google Scholar 

  35. H. Xu, Z. He, Y. Li et al., Carbon 213, 118290 (2023). https://doi.org/10.1016/j.carbon.2023.118290

    Article  CAS  Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997). https://doi.org/10.1103/PhysRevLett.78.1396

    Article  ADS  CAS  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  CAS  PubMed  Google Scholar 

  38. P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Adv. Funct. Mater. 31, 2102812 (2021). https://doi.org/10.1002/adfm.202102812

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21902186 and 21905305), and the Hunan Provincial Innovation Foundation For Postgraduate (Grant No. QL20210045). This work was supported in part by the High Performance Computing Center of Central South University

Funding

Funding were provided by National Natural Science Foundation of China (Grant Nos. 21902186, 21905305) and Hunan Provincial Innovation Foundation for Postgraduate (Grant No. QL20210045).

Author information

Authors and Affiliations

Authors

Contributions

CL: Methodology, Formal analysis, Data curation, Writing original draft. LD: Conceptualization, Supervision, Funding acquisition, Writing-review and editing. SP: Formal analysis. LQ: Conceptualization, Writing-review & editing. QW: Data curation. SH: Supervision, Methodology.

Corresponding author

Correspondence to Shengxiang Huang.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 237 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Deng, L., Peng, S. et al. Dielectric loss and microwave absorbing properties of the prepared MgCu2Nb2O8 composite ceramics. J Mater Sci: Mater Electron 35, 305 (2024). https://doi.org/10.1007/s10854-024-11988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11988-9

Navigation