Skip to main content
Log in

Enhanced dielectric properties of Pr and Fe co-substituted La2CoMnO6

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Double perovskite system with compositional formula LaPrCo1−xFexMnO6; (x = 0.2, 0.5, 0.8, 1.0) has been synthesized via the sol–gel technique and their dielectric properties were investigated. Impedance spectroscopy was used to evaluate various parameters such as dielectric constant, dielectric loss, ac conductivity and so on. The double perovskite system with enhanced dielectric properties has been achieved as compared to pure samples. Both dielectric constant and tan δ exhibited large values at low frequencies and took nearly constant values at higher frequencies. Dielectric constant (ε′) is observed to decrease initially with the substitution of Pr and Fe in La2CoMnO6 (LCMO) and afterwards shows increasing behaviour with increase in Fe content and is maximum for LPFMO (x = 1.0). The comparative plot of impedance and modulus confirmed that the system of samples disobeys ideal Debye type behaviour and has short-range mobility of charge carriers. Nyquist plots of impedance inveterate the decrease in bulk resistance with rise in temperature which represents typical semiconducting nature of synthesized system and depression in semicircular arcs suggested non-Debye type behaviour of prepared samples. The increase in the bulk resistance is observed with the substitution of Pr and Fe in LCMO, i.e. for LPCFMO1. But, later with increase in content of Fe, the bulk resistance is found to decrease up to x = 0.8 for LCFMO2 and LCFMO3 and then again increase for LPFMO (x = 1.0). Positive correlation has been displayed by ac conductivity for both frequency and temperature. Ac conductivity initially decreased with the substitution (Pr and Fe) and afterwards exhibited increasing trend with increase in Fe content up to LPCFMO3 (x = 0.8) and then decreased for LPFMO. Large dielectric constant and small tan δ for LPFMO at room temperature make it suitable for energy storage capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Authors state that data supporting the results of our work are present within this research paper. The raw data collected during experiments are obtainable from the corresponding author, if required, on reasonable request.

References

  1. A.S. Bhalla, R. Guo, R. Roy, Mat. Res. Innovat. 4, 3 (2000)

    CAS  Google Scholar 

  2. H. Tanaka, M. Misono, Curr. Opin. Solid State Mater. Sci. 5, 381 (2001)

    ADS  CAS  Google Scholar 

  3. W. Liu, W. Pan, J. Luo, A. Godfrey, G. Ou, H. Wu, W. Zhang, Nat. Commun. 6, 8354 (2015)

    ADS  CAS  PubMed  Google Scholar 

  4. S. Dacrory, A.B. Abou Hammad, A.M. El Nahrawy, H. Abou-Yousef, S. Kamel, ECS J. Solid State Sci. Technol. 10, 083004 (2021)

    CAS  Google Scholar 

  5. A.B. Abou Hammad, A.M. Mansour, A.M. El Nahrawy, Phys. Scr. 96, 125821 (2021)

    ADS  Google Scholar 

  6. G.A. Taylor, Prog. Solid St. Chem. 22, 197 (1993)

    ADS  Google Scholar 

  7. G. King, P.M. Woodward, J. Mater. Chem. 20, 5785 (2010)

    CAS  Google Scholar 

  8. S. Vasala, M. Karppinen, Prog. Solid State Chem. 43, 1 (2015)

    CAS  Google Scholar 

  9. A. Hossain, P. Bandyopadhyay, S. Roy, J. Alloys Compd. 740, 414 (2018)

    CAS  Google Scholar 

  10. M. Ullah, S.A. Khan, G. Murtaza, R. Khenata, N. Ullah, S. Bin Omran, J. Magn. Magn. Mater. 377, 197 (2015)

    ADS  CAS  Google Scholar 

  11. B. Orayech, I. Urcelay-Olabarria, G.A. López, O. Fabelo, A. Faik, J.M. Igartua, Dalton Trans. 44, 13867 (2015)

    CAS  PubMed  Google Scholar 

  12. A. Harbi, H. Moutaabbid, Y. Li, C. Renero-lecuna, M. Fialin, Y. Le Godec, S. Benmokhtar, M. Moutaabbid 778, 105 (2019)

    CAS  Google Scholar 

  13. I. Hussain, M.S. Anwar, S.N. Khan, A. Shahee, Z. Ur Rehman, B. Heun Koo, Ceram. Int. 43, 10080 (2017)

    CAS  Google Scholar 

  14. M. Das, P. Sarkar, P. Mandal, Phys. Rev. B 101, 144433 (2020)

    ADS  CAS  Google Scholar 

  15. J.S. Kang, S.M. Lee, D.H. Kim, S. Kolesnik, B. Dabrowski, B.G. Park, J.Y. Kim, J. Lee, B. Kim, B.I. Min, J. Appl. Phys. 107, 6 (2010)

    Google Scholar 

  16. W.Z. Yang, X.Q. Liu, H.J. Zhao, X.M. Chen, J. Magn. Magn. Mater. 371, 52 (2014)

    ADS  CAS  Google Scholar 

  17. D.K. Mahato, A. Dutta, T.P. Sinha, Phys. B Condens. Matter 406, 2703 (2011)

    ADS  CAS  Google Scholar 

  18. R.C. Sahoo, S. Das, T.K. Nath, J. Magn. Magn. Mater. 6, (2018).

  19. R. Das, R.N.P. Choudhary, Ceram. Int. 47, 439 (2021)

    CAS  Google Scholar 

  20. R.I. Dass, J.B. Goodenough, Phys. Rev. B 67, 014401 (2003)

    ADS  Google Scholar 

  21. J.K. Murthy, A. Venimadhav, A.I.P. Conf, Proc. 1447, 1235 (2012)

    Google Scholar 

  22. J. Shi, C. Wang, Z. Xu, Q. Shen, L. Zhang, Ceram. Int. 45, 20855 (2019)

    CAS  Google Scholar 

  23. Y. Xin, L. Shi, J. Zhao, X. Yuan, S. Zhou, L. Hou, R. Tong, J. Magn. Magn. Mater. 510, 166950 (2020)

    CAS  Google Scholar 

  24. R. Sharma, N. Hooda, A. Hooda, S. Khasa, Mater. Chem. Phys. 294, 127012 (2022)

    Google Scholar 

  25. A.P. Sazonov, I.O. Troyanchuk, D.P. Kozlenko, A.M. Balagurov, V.V. Sikolenko, J. Magn. Magn. Mater. 302, 443 (2006)

    ADS  CAS  Google Scholar 

  26. W.Z. Yang, X.Q. Liu, H.J. Zhao, Y.Q. Lin, X.M. Chen, J. Appl. Phys. (2012). https://doi.org/10.1063/1.4752262

    Article  Google Scholar 

  27. R.J. Booth, R. Fillman, H. Whitaker, A. Nag, R.M. Tiwari, K.V. Ramanujachary, J. Gopalakrishnan, S.E. Lofland, Mater. Res. Bull. 44, 1559 (2009)

    CAS  Google Scholar 

  28. S. Das, R.C. Sahoo, S. Mishra, D. Bhattacharya, T.K. Nath, Appl. Phys. A Mater. Sci. Process. (2022). https://doi.org/10.1007/s00339-022-05489-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. G. Hussain, S. Batool, Y. Zheng, S. Li, X. Wang, Materials 15, 6249 (2022)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Dagar, A. Hooda, S. Khasa, M. Malik, J. Alloys Compd. 826, 154214 (2020)

    CAS  Google Scholar 

  31. N. Panda, B.N. Parida, R. Padhee, R.N.P. Choudhary, J. Electron. Mater. 44, 4275 (2015)

    ADS  CAS  Google Scholar 

  32. S.A. Ul Islam, F.A. Andrabi, F. Mohmed, K. Sultan, M. Ikram, K. Asokan, J. Solid State Chem. 290, 121597 (2020)

    CAS  Google Scholar 

  33. K.W. Wagner, Ann. Phys. 345, 817 (1913)

    Google Scholar 

  34. S. Thomas, R. Thomas, A.K. Zachariah, R. Kumar, Spectrosc. Methods Nanomater. Charact. 2, 301 (2017)

    Google Scholar 

  35. K. Sultan, M. Ikram, K. Asokan, RSC Adv. 5, 93867 (2015)

    ADS  CAS  Google Scholar 

  36. C.G. Koops, Phys. Rev. 83, 121 (1951)

    ADS  CAS  Google Scholar 

  37. R. Sharma, N. Hooda, A. Hooda, S. Khasa, J. Alloys Compd. 965, 171394 (2023)

    CAS  Google Scholar 

  38. W.Z. Yang, X.Q. Liu, H.J. Zhao, Y.Q. Lin, X.M. Chen, J. Appl. Phys. 112, 064104 (2012)

    ADS  Google Scholar 

  39. U. Nissar, J. Ahmad, S. Hamad, Y. Iqbal, Mater. Res. Bull. 127, 110844 (2020)

    CAS  Google Scholar 

  40. R. Das, R.N.P. Choudhary, Journal of Advanced Ceramics 8, 174 (2019)

    CAS  Google Scholar 

  41. R. Das, R.N.P. Choudhary, Solid State Sci. 87, 1 (2019)

    ADS  CAS  Google Scholar 

  42. R. Das, R.N.P. Choudhary, Process. Appl. Ceram. 13, 1 (2019)

    Google Scholar 

  43. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd. 509, 6388 (2011)

    CAS  Google Scholar 

  44. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Mater. Res. 19, 1 (2016)

    CAS  Google Scholar 

  45. D.K. Mahato, A. Dutta, T.P. Sinha, J. Mater. Sci. 45, 6757 (2010)

    ADS  CAS  Google Scholar 

  46. D.K. Sharma, R. Kumar, R. Rai, S. Sharma, A.L. Kholkin, J. Adv. Dielectr. 02, 1250002 (2012)

    Google Scholar 

  47. R. Reetu, A. Agarwal, S. Sanghi, A. Ashima, N. Ahlawat, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4774283

    Article  Google Scholar 

  48. A. Oueslati, F. Hlel, K. Guidara, M. Gargouri, J. Alloys Compd. 492, 508 (2010)

    CAS  Google Scholar 

  49. A. Hooda, S. Sanghi, A. Agarwal, R. Dahiya, J. Magn. Magn. Mater. 387, 46 (2015)

    ADS  CAS  Google Scholar 

  50. K. Funke, Prog. Solid St. Chem. 22, 111 (1993)

    CAS  Google Scholar 

  51. S. Dagar, A. Hooda, S. Khasa, M. Malik, J. Alloys Compd. 806, 737 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

Reena and Neelam would like to thank DCRUST, Murthal, for providing financial support under URS and TEQIP.

Author information

Authors and Affiliations

Authors

Contributions

Reena Sharma and Neelam Hooda: conceptualization, methodology, investigation and formal analysis. Reena Sharma: writing-original draft, data curation, software and handling of manuscript. Ashima Hooda and Satish Khasa: supervision and writing-review and editing. Final manuscript has been read and approved by all authors.

Corresponding author

Correspondence to Ashima Hooda.

Ethics declarations

Competing interest

This research work is not influenced financially and personally by any other persons or organizations. The authors hereby state nil conflict to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 244 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Hooda, N., Hooda, A. et al. Enhanced dielectric properties of Pr and Fe co-substituted La2CoMnO6. J Mater Sci: Mater Electron 35, 257 (2024). https://doi.org/10.1007/s10854-024-11975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11975-0

Navigation