Skip to main content
Log in

PrMnCo-Ti3C2 MXene nanocomposite-based supercapacitor for the optimization of electrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The popularity of MXene has increased amongst researchers owing to its marvelous electrochemical properties. The current research work explores the synthesis of nanocomposites Pr0.02Mn0.5Co0.5Fe1.98O4–Ti3C2) which is most suitable for supercapacitor applications. The sol–gel method was used to synthesize the spinel ferrite (Pr0.02Mn0.5Co0.5Fe1.98O4) and the etching method for Ti3C2 MXene’s. The final (Pr0.02Mn0.5Co0.5Fe1.98O4–Ti3C2) nanocomposite was prepared using mechanical blending. The X-ray diffraction (XRD) analysis revealed the enhancement of the crystallite size of the Pr0.02Mn0.5Co0.5Fe1.98O4–Ti3C2 nanocomposite compared to the Pr0.02Mn0.5Co0.5Fe1.98O4, and Ti3C2. Field emission electron microscopy (FESEM) affirms the porous morphology that helps to enhance the electrochemical activity. The average crystallite size (D) Pr0.02Mn0.5Co0.5Fe1.98O4, Ti3C2, and Pr0.02Mn0.5Co0.5Fe1.98O4–Ti3C2 samples which are found to be 38 nm, 15 nm, and 31 nm respectively. The XPS results Pr0.02Mn0.5Co0.5Fe1.98O4–Ti3C2 composite affirms the presence of peaks viz. Ti 2p, Pr 3d, Mn 2p, Co 2p, Fe 2p, C 1s, O 1s. The electrochemical properties of the Pr0.02Mn0.5Co0.5Fe1.98O4–Ti3C2 nanocomposite were found to be superior to those of Pr0.02Mn0.5Co0.5Fe1.98O4 and Ti3C2. The specific capacitances of the Pr0.02Mn0.5Co0.5Fe1.98O4–Ti3C2, Ti3C2, and Pr0.02Mn0.5Co0.5Fe2O4 electrodes 1310.54 F g−1, 1181.95 F g−1, and 947.81 F g−1 at a current density of 2 A g−1. The nanocomposite showed good electrochemical performance and hence it is a promising material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage. Small 8(8), 1130–1166 (2012). https://doi.org/10.1002/smll.201101594

    Article  CAS  PubMed  ADS  Google Scholar 

  2. T. Chen, L. Dai, Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16(7–8), 272–280 (2013). https://doi.org/10.1016/j.mattod.2013.07.002

    Article  CAS  ADS  Google Scholar 

  3. W. Chen, H. Yu, S.Y. Lee, T. Wei, J. Li, Z. Fan, Nanocellulose: A promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev. 47(8), 2837–2872 (2018). https://doi.org/10.1039/c7cs00790f

    Article  CAS  PubMed  Google Scholar 

  4. Q. Wei et al., Porous One-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv. Mater. 29(20), 20 (2017)

    Article  Google Scholar 

  5. J.S. Sagu, D. Mehta, K.G.U. Wijayantha, Electrocatalytic activity of CoFe2O4 thin films prepared by AACVD towards the oxygen evolution reaction in alkaline media. Electrochem. Commun. 87, 1–4 (2017). https://doi.org/10.1016/j.elecom.2017.12.017

    Article  CAS  Google Scholar 

  6. T. Zou et al., Improvement of the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material by Al2O3 surface coating. J. Electroanal. Chem. 859, 113845 (2020). https://doi.org/10.1016/j.jelechem.2020.113845

    Article  CAS  Google Scholar 

  7. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625

    Article  CAS  PubMed  ADS  Google Scholar 

  8. H. Mahajan, S.K. Godara, A.K. Srivastava, Synthesis and investigation of structural, morphological, and magnetic properties of the manganese doped cobalt-zinc spinel ferrite. J. Alloys Compd. 896, 162966 (2022). https://doi.org/10.1016/j.jallcom.2021.162966

    Article  CAS  Google Scholar 

  9. M. Song et al., Preparation of Cu2O/Cu porous granular films by in situ oxidation for electrochemical energy storage. J. Electroanal. Chem. 857, 113755 (2020). https://doi.org/10.1016/j.jelechem.2019.113755

    Article  CAS  Google Scholar 

  10. S. Devaraj, N. Munichandraiah, High capacitance of electrodeposited MnO2 by the effect of a surface-active agent. Electrochem. Solid-State Lett. 8(7), 1–5 (2005). https://doi.org/10.1149/1.1922869

    Article  CAS  Google Scholar 

  11. C.V.G. Reddy, S.V. Manorama, V.J. Rao, Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens. Actuators B 55(1), 90–95 (1999). https://doi.org/10.1016/S0925-4005(99)00112-4

    Article  Google Scholar 

  12. M.G. Chapline, S.X. Wang, Room-temperature spin filtering in a Co Fe2 O4 Mg Al2 O4 Fe3 O4 magnetic tunnel barrier. Phys. Rev. B 74(1), 1–8 (2006). https://doi.org/10.1103/PhysRevB.74.014418

    Article  CAS  Google Scholar 

  13. S. Lee et al., Electrically driven phase transition in magnetite nanostructures. Nat. Mater. 7(2), 130–133 (2008). https://doi.org/10.1038/nmat2084

    Article  CAS  PubMed  ADS  Google Scholar 

  14. M.J. Carey et al., Spin valves using insulating cobalt ferrite exchange-spring pinning layers. Appl. Phys. Lett. 81(6), 1044–1046 (2002). https://doi.org/10.1063/1.1494859

    Article  CAS  ADS  Google Scholar 

  15. S.A. Wolf et al., Spintronics: a spin-based electronics vision for the future. Science 294(5546), 1488–1495 (2001). https://doi.org/10.1126/science.1065389

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Z. He, J.A. Koza, G. Mu, A.S. Miller, E.W. Bohannan, J.A. Switzer, Electrodeposition of CoxFe3-xO4 epitaxial films and superlattices. Chem. Mater. 25(2), 223–232 (2013). https://doi.org/10.1021/cm303289t

    Article  CAS  Google Scholar 

  17. S. Zhang et al., Preparation of core shell particles consisting of cobalt ferrite and silica by sol-gel process. J. Alloys Compd. 415(1–2), 257–260 (2006). https://doi.org/10.1016/j.jallcom.2005.07.048

    Article  CAS  Google Scholar 

  18. R. Wang et al., Electrochemical properties of manganese ferrite-based supercapacitors in aqueous electrolyte: the effect of ionic radius. Colloids Surf. A 457(1), 94–99 (2014). https://doi.org/10.1016/j.colsurfa.2014.05.059

    Article  CAS  Google Scholar 

  19. Y. Xu, J. Wei, J. Yao, J. Fu, D. Xue, Synthesis of CoFe2O4 nanotube arrays through an improved sol-gel template approach. Mater. Lett. 62(8–9), 1403–1405 (2008). https://doi.org/10.1016/j.matlet.2007.08.066

    Article  CAS  Google Scholar 

  20. S.T. Yang, J.H. Jia, L. Ding, M.C. Zhang, Studies of structure and cycleability of LiMn2O4 and LiNd0.01Mn1.99O4 as cathode for Li-ion batteries. Electrochim. Acta 48(5), 569–573 (2003). https://doi.org/10.1016/S0013-4686(02)00726-0

    Article  CAS  Google Scholar 

  21. R. Singhal et al., Synthesis and characterization of Nd doped LiMn2O4 cathode for Li-ion rechargeable batteries. J. Power. Sources 164(2), 857–861 (2007). https://doi.org/10.1016/j.jpowsour.2006.09.098

    Article  CAS  ADS  Google Scholar 

  22. P.K. Panda, A. Grigoriev, Y.K. Mishra, R. Ahuja, Progress in supercapacitors: Roles of two dimensional nanotubular materials. Nanoscale Adv. 2(1), 70–108 (2020). https://doi.org/10.1039/C9NA00307J

    Article  PubMed  ADS  Google Scholar 

  23. V. Bayram et al., MXene tuneable lamellae architectures for supercapacitor electrodes. ACS Appl Energy Mater. 3(1), 411–422 (2019)

    Article  ADS  Google Scholar 

  24. X. Zhang, X. Liu, R. Yan, J. Yang, Y. Liu, S. Dong, Ion-assisted self-assembly of macroporous MXene films as supercapacitor electrodes. J. Mater. Chem. C 8(February), 2008–2013 (2020). https://doi.org/10.1039/C9TC05595A

    Article  CAS  Google Scholar 

  25. I. Ayman et al., batteries and energy storage cofe2o4 nanoparticles-decorated 2d mxene : a novel hybrid material for supercapacitors applications. Energy Fuels 5, 4–5 (2020). https://doi.org/10.1021/acs.energyfuels.0c00959

    Article  CAS  Google Scholar 

  26. M.S. Shah, K. Ali, I. Ali, A. Mahmood, S.M. Ramay, M.T. Farid, Structural and magnetic properties of praseodymium substituted barium-based spinel ferrites. Mater. Res. Bull. 98(77–82), 2018 (2017). https://doi.org/10.1016/j.materresbull.2017.09.063

    Article  CAS  Google Scholar 

  27. Y. Köseoǧlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38(5), 3625–3634 (2012). https://doi.org/10.1016/j.ceramint.2012.01.001

    Article  CAS  Google Scholar 

  28. F.A. Khan, Structural and electrical properties of manganese doped cobalt ferrite. Mater Sci. Nanotechnol. 12, 1–2 (2018)

    Google Scholar 

  29. M.A. Khan, M.U. Islam, M. Ishaque, I.Z. Rahman, Effect of Tb substitution on structural, magnetic and electrical properties of magnesium ferrites. Ceram. Int. 37(7), 2519–2526 (2011). https://doi.org/10.1016/j.ceramint.2011.03.063

    Article  CAS  Google Scholar 

  30. M.T. Farid, I. Ahmad, S. Aman, Characterization of nickel based spinel ferrites with small substitution of praseodymium. J. Chem. Soc. Pakistan 35(3), 793–799 (2013)

    Google Scholar 

  31. L. Gama, A.P. Diniz, A.C.F.M. Costa, S.M. Rezende, A. Azevedo, D.R. Cornejo, Magnetic properties of nanocrystalline Ni-Zn ferrites doped with samarium. Phys. B 384(1–2), 97–99 (2006). https://doi.org/10.1016/j.physb.2006.05.161

    Article  CAS  ADS  Google Scholar 

  32. K. Kaur, H. Mahajan, A. Sharma, I. Mohammaed, A.K. Srivastava, D. Basandrai, Manganese doped cobalt – nickel spinel ferrite via. sol – gel approach : insight into structural, morphological, magnetic, and dielectric properties. J. Mater. Res. 24, 1–13 (2023). https://doi.org/10.1557/s43578-023-01119-1

    Article  CAS  Google Scholar 

  33. K. Raju, G. Venkataiah, D.H. Yoon, Effect of Zn substitution on the structural and magnetic properties of Ni-Co ferrites. Ceram. Int. 40(7), 9337–9344 (2014). https://doi.org/10.1016/j.ceramint.2014.01.157

    Article  CAS  Google Scholar 

  34. A. Munir, F. Ahmed, M. Saqib, M. Anis-ur-Rehman, Partial correlation of electrical and magnetic properties of Nd substituted Ni-Zn nanoferrites. J. Magn. Magn. Mater. 397(August), 188–197 (2016). https://doi.org/10.1016/j.jmmm.2015.08.076

    Article  CAS  ADS  Google Scholar 

  35. N.I. Shakir, Carbon coated MoO 3 Nanowires/graphene oxide ternary nanocomposite for high-performance supercapacitors. Electrochim. Acta (2016). https://doi.org/10.1016/j.electacta.2016.09.069

    Article  Google Scholar 

  36. G. Cui, L. Wang, L. Li, W. Xie, G. Gu, Synthesis of CuS nanoparticles decorated Ti3C2Tx MXene with enhanced microwave absorption performance. Prog. Nat. Sci. Mater. Int. 30(3), 343–351 (2020). https://doi.org/10.1016/j.pnsc.2020.06.001

    Article  CAS  Google Scholar 

  37. A. Kumar, “Metadata of the article that will be visualized in OnlineFirst ArticleTitle Structural, morphological, and electrochemical investigation of Mn 0.3 Co 0.2Zn0.5Fe2O4-polyaniline nanocomposite for supercapacitor application”. Available: http://orcid.org/0000-0002-5225-9028

  38. T.P. Gujar, W.Y. Kim, I. Puspitasari, K.D. Jung, O.S. Joo, Electrochemically deposited nanograin ruthenium oxide as a pseudocapacitive electrode. Int. J. Electrochem. Sci. 2(9), 666–673 (2007)

    Article  CAS  Google Scholar 

  39. P. Ramadevi, A. Sangeetha, F. Kousi, R. Shanmugavadivu, Structural and electrochemical investigation on pure and aluminium doped nickel ferrite nanoparticles for supercapacitor application. Mater. Today Proc. 33(3), 2116–2121 (2019). https://doi.org/10.1016/j.matpr.2020.02.888

    Article  CAS  Google Scholar 

  40. S.V. Bhandare et al., Effect of Mg-substitution in Co–Ni-ferrites: cation distribution and magnetic properties. Mater. Chem. Phys. 251, 123081 (2020). https://doi.org/10.1016/j.matchemphys.2020.123081

    Article  CAS  Google Scholar 

  41. R. Tiwari, M. De, H.S. Tewari, S.K. Ghoshal, Structural and magnetic properties of tailored NiFe2O4 nanostructures synthesized using auto-combustion method. Results Phys. 16, 102916 (2020). https://doi.org/10.1016/j.rinp.2019.102916

    Article  Google Scholar 

  42. A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K.M. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70−xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44(5), 5466–5472 (2018). https://doi.org/10.1016/j.ceramint.2017.12.180

    Article  CAS  Google Scholar 

  43. A. Thirumurugan et al., MXene/ferrite magnetic nanocomposites for electrochemical supercapacitor applications. Micromachines 13(10), 8 (2022). https://doi.org/10.3390/mi13101792

    Article  Google Scholar 

  44. L. Shao, A. Sun, Y. Zhang, L. Yu, N. Suo, Z. Zuo, Microstructure, XPS and magnetic analysis of Al-doped nickel–manganese–cobalt ferrite. J. Mater. Sci. Mater. Electron. 32(15), 20474–20488 (2021). https://doi.org/10.1007/s10854-021-06557-3

    Article  CAS  Google Scholar 

  45. R.S. Yadav et al., Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J. Phys. Chem. Solids 107, 150–161 (2017). https://doi.org/10.1016/j.jpcs.2017.04.004

    Article  CAS  ADS  Google Scholar 

  46. X.D. Jing, Z.G. Li, Z.T. Chen, Z.Y. Li, C.Y. Qin, H.Y. Gong, Effect of praseodymium valence change on the structure, magnetic, and microwave absorbing properties of M-type strontium ferrite: the mechanism of influence of citric acid dosage and calcination temperature. Mater. Today Chem. 30, 89 (2023). https://doi.org/10.1016/j.mtchem.2023.101537

    Article  CAS  Google Scholar 

  47. L. Rosenberger, R. Baird, E. McCullen, G. Auner, G. Shreve, XPS analysis of aluminum nitride films deposited by plasma source molecular beam epitaxy. Surf. Interface Anal. 40(9), 1254–1261 (2008). https://doi.org/10.1002/sia.2874

    Article  CAS  Google Scholar 

  48. Y. Wang et al., A high-performance, tailorable, wearable, and foldable solid-state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface. Adv. Funct. Mater. 31(7), 1–12 (2021). https://doi.org/10.1002/adfm.202008185

    Article  MathSciNet  CAS  Google Scholar 

  49. B.J. Rani et al., Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles. Nano-Struct. Nano-Objects 14, 84–91 (2018). https://doi.org/10.1016/j.nanoso.2018.01.012

    Article  CAS  Google Scholar 

  50. G. Nabi et al., Role of cerium-doping in CoFe2O4 electrodes for high performance supercapacitors. J. Energy Storage 29(12), 2020 (2019). https://doi.org/10.1016/j.est.2020.101452

    Article  Google Scholar 

  51. B. Bhujun, M.T.T. Tan, A.S. Shanmugam, Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys. 7(5), 345–353 (2017). https://doi.org/10.1016/j.rinp.2016.04.010

    Article  ADS  Google Scholar 

  52. B. Bhujun, M.T.T. Tan, A.S. Shanmugam, Evaluation of aluminium doped spinel ferrite electrodes for supercapacitors. Ceram. Int. 42(5), 6457–6466 (2016). https://doi.org/10.1016/j.ceramint.2015.12.118

    Article  CAS  Google Scholar 

  53. K. Kannan, K.K. Sadasivuni, A.M. Abdullah, B. Kumar, Current trends in MXene-based nanomaterials for energy storage and conversion system: a mini review. Catalysts 10(5), 5 (2020). https://doi.org/10.3390/CATAL10050495

    Article  Google Scholar 

  54. T. Yaqoob et al., MXene/Ag2CrO4 nanocomposite as supercapacitors electrode. Materials (Basel). 14(20), 8 (2021). https://doi.org/10.3390/MA14206008

    Article  Google Scholar 

  55. H. Mahajan et al., Structural, morphological, and electrochemical investigation of Mn0.3Co0.2Zn0.5Fe2O4-polyaniline nanocomposite for supercapacitor application. J. Mater. Sci. Mater. Electron. 33(35), 26590–26603 (2022). https://doi.org/10.1007/s10854-022-09335-x

    Article  CAS  Google Scholar 

  56. A. Ali et al., 3D NiO nanowires@NiO nanosheets core-shell structures grown on nickel foam for high performance supercapacitor electrode. J. Electroanal. Chem. 857, 113710 (2020). https://doi.org/10.1016/j.jelechem.2019.113710

    Article  CAS  Google Scholar 

  57. A.Z. Al-Shaqsi, K. Sopian, A. Al-Hinai, “Review of energy storage services, applications, limitations, and benefits. Energy Rep. 6, 288–306 (2020). https://doi.org/10.1016/j.egyr.2020.07.028

    Article  Google Scholar 

  58. W. Wang, Q. Hao, W. Lei, X. Xia, X. Wang, Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors. J. Power. Sources 269, 250–259 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.010

    Article  CAS  ADS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

KK and HM performed the experimental work along with a discussion of the data. SKG performed XRD characterization. PK and NSa performed XPS characterization. DB and AKS Supervised the work, analyzed the result, drafting and editing of the manuscript with input from all the co-authors.

Corresponding author

Correspondence to Deepak Basandrai.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, K., Mahajan, H., Godara, S.K. et al. PrMnCo-Ti3C2 MXene nanocomposite-based supercapacitor for the optimization of electrochemical performance. J Mater Sci: Mater Electron 35, 229 (2024). https://doi.org/10.1007/s10854-024-11972-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11972-3

Navigation