Skip to main content
Log in

Hydrothermally synthesized nickel ferrite nanoparticles integrated reduced graphene oxide nanosheets as an electrode material for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, we have employed an integrative strategy to synthesize a three-dimensional hierarchical electrode material consisting of NiFe2O4/r-GO nanostructures using a simple hydrothermal process and subsequently explored its electrocapacitive performance. The structural and morphological characteristics of the as-synthesized NiFe2O4/r-GO nanostructure have been accessed through X-ray diffraction (XRD), Raman spectroscopy, Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), and X-ray photospectrometer (XPS). The electrocapacitive performances of the as-synthesized sample have been evaluated by galvanostatic charge–discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) using a three-electrode system with 3-M KOH electrolyte solution. As-prepared hierarchical electrode material exhibits specific capacity ∼ 362.46 F g−1 at a current density of 0.65 A g−1, suggesting good rate capability. Furthermore, NiFe2O4/r-GO-nanostructured electrode material displays a significant high energy ∼ 36.37 Wh/kg and power density as ∼ 276.22 W/kg. Moreover, the as-synthesized nanocomposite harvests a superior cycling stability over 5000 cycles without obvious capacitance attenuation. The NiFe2O4/r-GO provides rapid pathways for electron transfer and diminishes the ion diffusion routes due to NiFe2O4 over r-GO sheets, which ultimately results in exceptional electrochemical properties. Henceforth, NiFe2O4/r-GO nanocomposite which renders a new reasonable design to manifest more energy density and deliver maximum power may be enrooted as a promising/prospective electrode material due to its unique morphological properties, superior conductivity, and favorable cyclic stability in the field of energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available on request from the authors.

Abbreviations

AC :

Active material

r-GO :

Reduced graphene oxide

NaOH :

Sodium hydroxide

KOH :

Potassium hydroxide

GCE :

Glassy carbon electrode

XRD :

X-ray powder diffraction

TEM :

Transmission electron microscopy

SEM :

Scanning electron microscopy

EDAX :

Energy-dispersive X-ray spectroscopy

CV :

Cyclic voltammetry

GCD :

Galvanostatic charge–discharge

EIS :

Electrochemical impedance spectroscopy

EDLC :

Electrochemical double-layer capacitor

XPS :

X-ray photoelectron spectroscopy

References

  1. Y.-Z. Cai, W.-Q. Cao, Y.-L. Zhang, P. He, J.-C. Shu, M.-S. Cao, Tailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes. J. Alloys Compd. 811, 152011 (2019)

    Article  CAS  Google Scholar 

  2. T. Zhao, C. Liu, F. Yi, X. Liu, A. Gao, D. Shu, J. Ling, Promoting high-energy supercapacitor performance over NiCoP/N-doped carbon hybrid hollow nanocages via rational architectural and electronic modulation. Appl. Surf. Sci. 569, 151098 (2021)

    Article  CAS  Google Scholar 

  3. C. Li, X. Wang, S. Li, Q. Li, J. Xu, X. Liu, C. Liu, Y. Xu, J. Liu, H. Li, P. Guo, X.S. Zhao, Optimization of NiFe2O4/rGO composite electrode for lithium-ion batteries. Appl. Surf. Sci. 416, 308–317 (2017)

    Article  ADS  CAS  Google Scholar 

  4. B. Mordina, R. Kumar, N.S. Neeraj, A.K. Srivastava, D.K. Setua, A. Sharma, Binder free high performance hybrid supercapacitor device based on nickel ferrite nanoparticles. J. Energy Storage. 31, 101677 (2020)

    Article  Google Scholar 

  5. A. Velasco, Y.K. Ryu, A. Boscá, A. Ladrón-de-Guevara, E. Hunt, J. Zuo, J. Pedrós, F. Calle, J. Martinez, Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustain. Energy Fuels 5(5), 1235–1254 (2021)

    Article  CAS  Google Scholar 

  6. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1(1), 1–6 (2010)

    Article  Google Scholar 

  7. M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. C. Zhao, Q. Wang, H. Zhang, S. Passerini, X. Qian, Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Appl. Mater. Interfaces 8(24), 15661–15667 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. P. Yan, R. Zhang, J. Jia, C. Wu, A. Zhou, J. Xu, X. Zhang, Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J. Power Sources. 284, 38–43 (2015)

    Article  ADS  CAS  Google Scholar 

  10. L. Staudenmaier, Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft 31, 1481–1499 (1898)

    Article  CAS  Google Scholar 

  11. Y. Altinay, E. Gökoğlan, Ç. Yener, G. Ünlü, B. Şahin, SILAR processing and characterization of bare and graphene oxide (GO) and reduced graphene oxide (rGO)-doped CuO thin films. Appl. Phys. A 128(9), 1–14 (2022)

    Article  Google Scholar 

  12. H.L. Poh, F. Šaněk, A. Ambrosi, G. Zhao, Z. Sofer, M. Pumera, Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4(11), 3515–3522 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. A. Kumar, A.K. Singh, M. Tomar, V. Gupta, P. Kumar, K. Singh, Electromagnetic interference shielding performance of lightweight NiFe2O4/rGO nanocomposite in X-band frequency range. Ceram. Int. 46(10), 15473–15481 (2020)

    Article  CAS  Google Scholar 

  14. R.S. Yadav, I. Kuřitka, J. Vilčáková, M. Machovský, D. Škoda, P. Urbánek, M. Masař, M. Gořalik, M. Urbánek, L. Kalina, Polypropylene nanocomposite filled with spinel ferrite NiFe2O4 nanoparticles and in-situ thermally-reduced graphene oxide for electromagnetic interference shielding application. Nanomaterials. 9(4), 621 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Ahlawat, V. Sathe, Raman study of NiFe2O4 nanoparticles, bulk and films: effect of laser power. J. Raman Spectrosc. 42(5), 1087–1094 (2011)

    Article  ADS  CAS  Google Scholar 

  16. M. Iliev, D. Mazumdar, J. Ma, A. Gupta, F. Rigato, J. Fontcuberta, Monitoring B-site ordering and strain relaxation in NiFe2O4 epitaxial films by polarized Raman spectroscopy. Phys. Rev. B 83(1), 014108 (2011)

    Article  ADS  Google Scholar 

  17. A. Buurma, G. Blake, T. Palstra, U. Adem, Multiferroic materials: physics and properties. Ref. Module Mater. Sci. Mater. Eng. (2016). https://doi.org/10.1016/B978-0-12-803581-8.09245-6

    Article  Google Scholar 

  18. Y. Zhou, Q. Bao, L.A.L. Tang, Y. Zhong, K.P. Loh, Hydrothermal dehydration for the green reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 21(13), 2950–2956 (2009)

    Article  CAS  Google Scholar 

  19. Y. Wang, F. Jiang, J. Chen, X. Sun, T. Xian, H. Yang, In situ construction of CNT/CuS hybrids and their application in photodegradation for removing organic dyes. Nanomaterials. 10(1), 178 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  20. O. Maslova, M. Ammar, G. Guimbretière, J.-N. Rouzaud, P. Simon, Determination of crystallite size in polished graphitized carbon by Raman spectroscopy. Phys. Rev. B 86(13), 134205 (2012)

    Article  ADS  Google Scholar 

  21. X. Jia, Y. Zhang, L. Zhang, L. Wang, L. Zhou, Fabrication and bifunctional electrocatalytic performance of FeNi3/MnFe2O4/nitrogen-doping reduced graphene oxide nanocomposite for oxygen electrocatalytic reactions. Ionics. 26(2), 991–1001 (2020)

    Article  Google Scholar 

  22. V.T. Pham, H.-T.T. Nguyen, D. Thi Cam Nguyen, H.T.N. Le, T. Thi Nguyen, N. Thi Hong Le, K.T. Lim, T. Duy Nguyen, T.V. Tran, L.G. Bach, Process optimization by a response surface methodology for adsorption of Congo red dye onto exfoliated graphite-decorated MnFe2O4 nanocomposite: the pivotal role of surface chemistry. Processes. 7(5), 305 (2019)

    Article  CAS  Google Scholar 

  23. T. Iftikhar, Y. Xu, A. Aziz, G. Ashraf, G. Li, M. Asif, F. Xiao, H. Liu, Tuning electrocatalytic aptitude by incorporating α-MnO2 nanorods in Cu-MOF/rGO/CuO hybrids: electrochemical sensing of resorcinol for practical applications. ACS Appl. Mater. Interfaces. 13(27), 31462–31473 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. B. Gupta, N. Kumar, K. Panda, V. Kanan, S. Joshi, I. Visoly-Fisher, Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 7(1), 1–14 (2017)

    Article  Google Scholar 

  25. T. Uzzaman, S. Zawar, M.T. Ansar, S.M. Ramay, A. Mahmood, S. Atiq, Electrochemical performance of NiFe2O4 nanostructures incorporating activated carbon as an efficient electrode material. Ceram. Int. 47(8), 10733–10741 (2021)

    Article  CAS  Google Scholar 

  26. J. Pan, S. Li, F. Li, T. Yu, Y. Liu, L. Zhang, L. Ma, M. Sun, X. Tian, The NiFe2O4/NiCo2O4/GO composites electrode material derived from dual-MOF for high performance solid-state hybrid supercapacitors. Colloids Surf. A 609, 125650 (2021)

    Article  CAS  Google Scholar 

  27. S.B. Bandgar, M.M. Vadiyar, Y.-C. Ling, J.-Y. Chang, S.-H. Han, A.V. Ghule, S.S. Kolekar, Metal precursor dependent synthesis of NiFe2O4 thin films for high-performance flexible symmetric supercapacitor. ACS Appl. Energy Mater. 1(2), 638–648 (2018)

    Article  CAS  Google Scholar 

  28. X. Gao, W. Wang, J. Bi, Y. Chen, X. Hao, X. Sun, J. Zhang, Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor. Electrochim. Acta. 296, 181–189 (2019)

    Article  CAS  Google Scholar 

  29. X. Zhang, Z. Zhang, S. Sun, Y. Wu, Q. Sun, X. Liu, A facile one-step hydrothermal approach to synthesize hierarchical core-shell NiFe2O4@NiFe2O4 nanosheet arrays on Ni foam with large specific capacitance for supercapacitors. RSC Adv. 8(27), 15222–15228 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. M.B. Askari, P. Salarizadeh, M. Seifi, S.M. Rozati, A. Beheshti-Marnani, Binary mixed molybdenum cobalt sulfide nanosheets decorated on rGO as a high-performance supercapacitor electrode. Nanotechnology. 31(27), 275406 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. M.B. Askari, P. Salarizadeh, Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material. Int. J. Hydrog. Energy. 45(51), 27482–27491 (2020)

    Article  CAS  Google Scholar 

  32. G.K. Gupta, P. Sagar, M. Srivastava, A.K. Singh, J. Singh, S. Srivastava, A. Srivastava, Excellent supercapacitive performance of graphene quantum dots derived from a bio-waste marigold flower (Tagetes erecta). Int. J. Hydrog. Energy 46(77), 38416–38424 (2021)

    Article  CAS  Google Scholar 

  33. Y. Zhao, L. Xu, J. Yan, W. Yan, C. Wu, J. Lian, Y. Huang, J. Bao, J. Qiu, L. Xu, Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor. J. Alloys Compd. 726, 608–617 (2017)

    Article  CAS  Google Scholar 

  34. M. Fu, W. Chen, X. Zhu, Q. Liu, One-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stability. J. Power Sources. 396, 41–48 (2018)

    Article  ADS  CAS  Google Scholar 

  35. V. Vignesh, K. Subramani, M. Sathish, R. Navamathavan, Electrochemical investigation of manganese ferrites prepared via a facile synthesis route for supercapacitor applications. Colloids Surf. A 538, 668–677 (2018)

    Article  CAS  Google Scholar 

  36. M. Sethi, U.S. Shenoy, S. Muthu, D.K. Bhat, Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications. Front. Mater. Sci. 14(2), 120–132 (2020)

    Article  Google Scholar 

  37. G.K. Gupta, P. Sagar, S.K. Pandey, M. Srivastava, A. Singh, J. Singh, A. Srivastava, S. Srivastava, A. Srivastava, Situ fabrication of activated carbon from a bio-waste Desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Res. Lett. 16(1), 1–12 (2021)

    Article  Google Scholar 

  38. Q. Wang, J.-E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109(31), 14945–14953 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. K. Mahesh, H. Manjunatha, T. Venkatesha, G. Suresh, Study of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 in aqueous solution using electrochemical impedance spectroscopy. J. Solid State Electrochem. 16(9), 3011–3025 (2012)

    Article  CAS  Google Scholar 

  40. S.H. Aboutalebi, A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu, S.X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy Environ. Sci. 4(5), 1855–1865 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors (GKP & AS) express their gratitude to the Vice Chancellor, VBS Purvanchal University for all the required supports in the research work.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GKP contributed to methodology and investigation, PS contributed to methodology and investigation, MS contributed to methodology and investigation, JS analyzed the data, AKS analyzed the data, SKS contributed to project administration and writing, reviewing, and editing of the manuscript, AS contributed to conceptualization, supervision, and writing and editing of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to S. K. Srivastava or Amit Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, G.K., Sagar, P., Srivastava, M. et al. Hydrothermally synthesized nickel ferrite nanoparticles integrated reduced graphene oxide nanosheets as an electrode material for supercapacitors. J Mater Sci: Mater Electron 35, 255 (2024). https://doi.org/10.1007/s10854-024-11967-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11967-0

Navigation