Skip to main content
Log in

Synthesis and structural, magnetic, and catalytic characteristics Ag–Cr doped Zn nanoferrite series for dye degradation utilizing advanced oxidation processes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ag–Cr doped Zn nanoferrite series (Zn(1-2x)AgxCrxFe2O4, where x = 0.0 to 0.25) has been prepared using the co-precipitation method. The spinel ferrite nanoparticles structure, magnetic and catalytic properties were investigated. X-ray diffraction showed that the synthesized samples contained a single cubic spinel structure, and crystallite size was in the nano-range (7–15 nm). Fourier-transform infrared spectra showed two significant absorption bands at 600 cm−1 and 400 cm−1, which belonged to the tetrahedral (A) and octahedral (B) sites, respectively. These samples transformed from the paramagnetic phase into the superparamagnetic phase as the Ag–Cr doping increased. Based on what they were like before, these samples could be used as catalysts to speed up the breakdown of different dyes when H2O2 is present. When our group used these materials with the malachite green dye, the oxidation process proceeded according to first-order kinetics. This research showed that the dye concentration, H2O2 concentration, pH, catalyst dose, and temperature all affect how catalytically active they are.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. R. Jarariya, A review based on spinel ferrite nanomaterials-MgFe2O4-synthesis of photocatalytic dye degradation in visible light response. J. Environ. Treat. Tech. 10(2), 149–56 (2022)

    Google Scholar 

  2. Y. Xu, J. Ai, H. Zhang, The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process. J. Hazard. Mater. 309, 87–96 (2016). https://doi.org/10.1016/j.jhazmat.2016.01.023

    Article  CAS  PubMed  Google Scholar 

  3. A.K.S. Rocha, L.B. Magnago, J.J. Santos, V.M. Leal, A.A.L. Marins, V.C.B. Pegoretti, S.A.D. Ferreira, M.F.F. Lelis, M.B.J.G. Freitas, Copper ferrite synthesis from spent Li-ion batteries for multifunctional application as catalyst in photo Fenton process and as electrochemical pseudocapacitor. Mater. Res. Bull. 113, 231–240 (2019). https://doi.org/10.1016/j.materresbull.2019.02.007

    Article  CAS  Google Scholar 

  4. R. Jasrotia, A. Verma, R. Verma, J. Ahmed, S.K. Godara, G. Kumar, A. Mehtab, T. Ahmad, S. Kalia, Photocatalytic dye degradation efficiency and reusability of Cu-substituted Zn-Mg spinel nanoferrites for wastewater remediation. J. Water Process Eng. 1(48), 102865 (2022)

    Article  Google Scholar 

  5. M. Amiri, M. Salavati-Niasari, A. Akbari, T. Gholami, Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: herbal and green sol-gel autocombustion synthesis. Int. J. Hydrogen Energy. 42, 24846–24860 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.077

    Article  CAS  Google Scholar 

  6. K.C. Das, S.S. Dhar, Rapid catalytic degradation of malachite green by MgFe2O4 nanoparticles in presence of H2O2. J. Alloys Compd. 828, 154462 (2020). https://doi.org/10.1016/j.jallcom.2020.154462

    Article  CAS  Google Scholar 

  7. G. Katoch, J. Prakash, R. Jasrotia, A. Verma, R. Verma, S. Kumari, T. Ahmad, S.K. Godara, J. Ahmed, A. Kandwal, M. Fazil, P.K. Maji, S. Kumar, G. Kumar, Sol-gel auto-combustion developed Nd and Dy co-doped Mg nanoferrites for photocatalytic water treatment, electrocatalytic water splitting and biological applications. J. Water Process Eng. 53, 103726 (2023). https://doi.org/10.1016/j.jwpe.2023.103726

    Article  Google Scholar 

  8. M. Verma, M. Mitan, H. Kim, D. Vaya, Efficient photocatalytic degradation of Malachite green dye using facilely synthesized cobalt oxide nanomaterials using citric acid and oleic acid. J. Phys. Chem. Solids 1(155), 110125 (2021)

    Article  Google Scholar 

  9. A.M. El-Sawy, M.A. Salem, I.A. Salem, M.M. Hydara, A.B. Zaki, Sonophotocatalytic degradation of malachite green in aqueous solution using six competitive metal oxides as a benchmark. Photochem. Photobiol. Sci. 22(3), 579–94 (2023)

    Article  CAS  PubMed  Google Scholar 

  10. B. Arora, S. Sharma, S. Dutta, S. Yadav, P. Rana, R.K. Sharma, Fabrication of a recyclable magnetic halloysite-based cobalt nanocatalyst for the efficient degradation of bisphenol A and malachite green. Mater. Adv. 3(15), 6373–84 (2022)

    Article  CAS  Google Scholar 

  11. P. Kotwal, R. Jasrotia, J. Prakash, J. Ahmed, A. Verma, R. Verma, A. Kandwal, S.K. Godara, S. Kumari, P.K. Maji, M. Fazil, T. Ahmad, M.S. Tamboli, N. Sharma, R. Kumar, Magnetically recoverable sol-gel auto-combustion developed Ni(1–x)Cu(x)Dy(y)Fe(2-y)O(4) magnetic nanoparticles for photocatalytic, electrocatalytic, and antibacterial applications. Environ. Res. 231, 116103 (2023). https://doi.org/10.1016/j.envres.2023.116103

    Article  CAS  PubMed  Google Scholar 

  12. N.M. Mahmoodi, Zinc ferrite nanoparticle as a magnetic catalyst: synthesis and dye degradation. Mater. Res. Bull. 48, 4255–4260 (2013). https://doi.org/10.1016/j.materresbull.2013.06.070

    Article  CAS  Google Scholar 

  13. A. Tawfik, M.G. Alalm, H.M. Awad, M. Islam, M.A. Qyyum, A.A. Al-Muhtaseb, A.I. Osman, M. Lee, Solar photo-oxidation of recalcitrant industrial wastewater: a review. Environ. Chem. Lett. 20(3), 1839–62 (2022)

    Article  CAS  Google Scholar 

  14. S.K. Ray, D. Dhakal, S.W. Lee, Visible light driven Ni–BaMo3O10 photocatalyst for Indigo Carmine degradation: Mechanism and pathways. Mater. Sci. Semicond. Process. 105, 104697 (2020). https://doi.org/10.1016/j.mssp.2019.104697

    Article  CAS  Google Scholar 

  15. T. Zhou, G. Zhang, P. Ma, X. Qiu, H. Zhang, H. Yang, G. Liu, Novel magnetically separable Ag3PO4@CuFe2O4 micro-nanocomposite with highly enhanced visible-light-driven photocatalytic activity. Mater. Lett. 210, 271–274 (2018). https://doi.org/10.1016/j.matlet.2017.09.044

    Article  CAS  Google Scholar 

  16. M. Su, C. He, V.K. Sharma, M. Abou Asi, D. Xia, X. Zhong Li, H. Deng, Y. Xiong, Zinc ferrite: synthesis, characterization, and mesoporous photocatalytic activity with H2O2/visible light. J. Hazard. Mater. 211–212, 95–103 (2012). https://doi.org/10.1016/j.jhazmat.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  17. K. Mohit, V.R. Gupta, N. Gupta, S.K. Rout, Structural and microwave characterization of Ni0.2Co xZn0.8-xFe2O4 for antenna applications. Ceram. Int. 40, 1575–1586 (2014). https://doi.org/10.1016/j.ceramint.2013.07.045

    Article  CAS  Google Scholar 

  18. H.B. Desai, A. Kumar, A.R. Tanna, Structural and magnetic properties of MgFe2O4 ferrite nanoparticles synthesis through auto combustion technique. Eur. Chem. Bull. 10(3), 186–190 (2021)

    CAS  Google Scholar 

  19. M. Mozaffari, H. Masoudi, Zinc ferrite nanoparticles: new preparation method and magnetic properties. J. Supercond. Nov. Magn. 27, 2563–2567 (2014). https://doi.org/10.1007/s10948-014-2625-x

    Article  CAS  Google Scholar 

  20. R. Sharma, S. Singhal, Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue. Physica B 414, 83–90 (2013). https://doi.org/10.1016/j.physb.2013.01.015

    Article  ADS  CAS  Google Scholar 

  21. R.M. Sebastian, S. Xavier, E.M. Mohammed, Dielectric behavior and AC conductivity of Mg2+ doped zinc ferrite nanoparticles synthesized by sol-gel technique. Ferroelectrics 481, 48–56 (2015). https://doi.org/10.1080/00150193.2015.1049491

    Article  ADS  CAS  Google Scholar 

  22. S.M. Chavan, M.K. Babrekar, S.S. More, K.M. Jadhav, Structural and optical properties of nanocrystalline Ni-Zn ferrite thin films. J. Alloys Compd. 507, 21–25 (2010). https://doi.org/10.1016/j.jallcom.2010.07.171

    Article  CAS  Google Scholar 

  23. G. Satyanarayana, G. Nageswara Rao, K.V. Babu, G.V. Santosh Kumar, G. Dinesh Reddy, Effect of Cr 3+ substitution on the structural, electrical and magnetic properties of Ni 0.7 Zn 0.2 Cu 0.1 Fe 2–x Cr x O 4 Ferrites. J. Korean Phys. Soc. 74, 684–694 (2019). https://doi.org/10.3938/jkps.74.684

    Article  ADS  CAS  Google Scholar 

  24. E.E. Ateia, M. Farag, Synthesis of cobalt/calcium nanoferrites with controllable physical properties. Appl. Phys. A 125, 1–10 (2019). https://doi.org/10.1007/s00339-019-2593-x

    Article  ADS  CAS  Google Scholar 

  25. A. Goyal, S. Bansal, S. Singhal, Facile reduction of nitrophenols: comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites. Int. J. Hydrogen Energy. 39, 4895–4908 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.050

    Article  CAS  Google Scholar 

  26. M.A. Ansari, A. Baykal, S. Asiri, S. Rehman, Synthesis and characterization of antibacterial activity of spinel chromium-substituted copper ferrite nanoparticles for biomedical application. J. Inorg. Organomet. Polym. Mater. 28, 2316–2327 (2018). https://doi.org/10.1007/s10904-018-0889-5

    Article  CAS  Google Scholar 

  27. M.R. Bhandare, H.V. Jamadar, A.T. Pathan, B.K. Chougule, A.M. Shaikh, Dielectric properties of Cu substituted Ni0.5-xZn 0.3Mg0.2Fe2O4 ferrites. J. Alloys Compd. 509, 113–118 (2011). https://doi.org/10.1016/j.jallcom.2010.11.173

    Article  CAS  Google Scholar 

  28. K.M. Batoo, M.S.A. El-Sadek, Electrical and magnetic transport properties of Ni-Cu-Mg ferrite nanoparticles prepared by sol-gel method. J. Alloys Compd. 566, 112–119 (2013). https://doi.org/10.1016/j.jallcom.2013.02.129

    Article  CAS  Google Scholar 

  29. M. Madhukara Naik, H.S. Bhojya Naik, G. Nagaraju, M. Vinuth, H. RajaNaika, K. Vinu, Green synthesis of zinc ferrite nanoparticles in Limonia acidissima juice: characterization and their application as photocatalytic and antibacterial activities. Microchem. J. 146, 1227–1235 (2019). https://doi.org/10.1016/j.microc.2019.02.059

    Article  CAS  Google Scholar 

  30. F. Majid, J. Rauf, S. Ata, I. Bibi, M. Yameen, M. Iqbal, Hydrothermal synthesis of zinc doped nickel ferrites: evaluation of structural, magnetic and dielectric properties. Z. Phys. Chem. (2018). https://doi.org/10.1515/zpch-2018-1305

    Article  Google Scholar 

  31. A.A. Ati, A.H. Abdalsalam, A.S. Hasan, Thermal, microstructural and magnetic properties of manganese substitution cobalt ferrite prepared via co-precipitation method. J. Mater. Sci. Mater. Electron. 32(3), 3019–37 (2021)

    Article  CAS  Google Scholar 

  32. N. Amin, M. Sajjad, U. Hasan, Z. Majeed, Z. Latif, M. Ajaz, K. Mahmood, A. Ali, K. Mehmood, M. Fatima, M. Akhtar, M. Imran, A. Bibi, M. Zahir, F. Jabeen, N. Bano, Structural, electrical, optical and dielectric properties of yttrium substituted cadmium ferrites prepared by Co-Precipitation method. Ceram. Int. 46(13), 1–12 (2020). https://doi.org/10.1016/j.ceramint.2020.05.079

    Article  CAS  Google Scholar 

  33. A.I. Borhan, P. Samoila, V. Hulea, A.R. Iordan, M.N. Palamaru, Photocatalytic activity of spinel ZnFe2-xCrxO4 nanoparticles on removal Orange I azo dye from aqueous solution. J. Taiwan Inst. Chem. Eng. 45, 1655–1660 (2014). https://doi.org/10.1016/j.jtice.2013.12.002

    Article  CAS  Google Scholar 

  34. M. Hashim, S. Alimuddin, S.E. Kumar, R.K. Shirsath, J. Kotnala, R. Shah, Kumar, Influence of Cr3+ ion on the structural, ac conductivity and magnetic properties of nanocrystalline Ni-Mg ferrite. Ceram. Int. 39, 1807–1819 (2013). https://doi.org/10.1016/j.ceramint.2012.08.028

    Article  CAS  Google Scholar 

  35. S.J. Haralkar, R.H. Kadam, S.S. More, S.E. Shirsath, M.L. Mane, S. Patil, D.R. Mane, Substitutional effect of Cr 3+ ions on the properties of Mg-Zn ferrite nanoparticles. Physica B 407, 4338–4346 (2012). https://doi.org/10.1016/j.physb.2012.07.030

    Article  ADS  CAS  Google Scholar 

  36. M.A. Gabal, Y.M. AlAngari, A. Saaed, Properties of Co 1 − x Zn x Fe 2 O 4 Nanocrystalline Auto-Combustion Method, (2017) 1–12.

  37. M.N. Akhtar, M.A. Khan, M. Ahmad, M.S. Nazir, M. Imran, A. Ali, A. Sattar, G. Murtaza, Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5−xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications. J. Magn. Magn. Mater. 421, 260–268 (2017). https://doi.org/10.1016/j.jmmm.2016.08.035

    Article  ADS  CAS  Google Scholar 

  38. D.S. Nair, M. Kurian, Chromium-zinc ferrite nanocomposites for the catalytic abatement of toxic environmental pollutants under ambient conditions. J. Hazard. Mater. 344, 925–941 (2018). https://doi.org/10.1016/j.jhazmat.2017.11.045

    Article  CAS  PubMed  Google Scholar 

  39. P. Samoila, L. Sacarescu, A.I. Borhan, D. Timpu, M. Grigoras, N. Lupu, M. Zaltariov, V. Harabagiu, Magnetic properties of nanosized Gd doped Ni-Mn-Cr ferrites prepared using the sol-gel autocombustion technique. J. Magn. Magn. Mater. 378, 92–97 (2015). https://doi.org/10.1016/j.jmmm.2014.10.174

    Article  ADS  CAS  Google Scholar 

  40. T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloys Compd. 731, 1256–1266 (2018). https://doi.org/10.1016/j.jallcom.2017.10.103

    Article  CAS  Google Scholar 

  41. R. Sagayaraj, S. Aravazhi, C. Selva kumar, S. Senthil kumar, G. Chandrasekaran, Tuning of ferrites (CoxFe3-xO4) nanoparticles by co-precipitation technique. SN Appl. Sci. 1, 1–11 (2019). https://doi.org/10.1007/s42452-019-0244-7

    Article  CAS  Google Scholar 

  42. H. Zhu, H. Zou, Ultra-efficient catalytic degradation of malachite green dye wastewater by KMnO 4-modified biochar (Mn/SRBC). RSC Adv. 12(41), 27002–11 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. F. Meshkani, M. Rezaei, Preparation of nanocrystalline metal (Cr, Al, Mn, Ce, Ni, Co and Cu) modified ferrite catalysts for the high temperature water gas shift reaction. Renew. Energy. 74, 588–598 (2015). https://doi.org/10.1016/j.renene.2014.08.037

    Article  CAS  Google Scholar 

  44. P.A. Vinosha, B. Xavier, S. Krishnan, S.J. Das, Investigation on zinc substituted highly porous improved catalytic activity of NiFe2O4 nanocrystal by co-precipitation method. Mater. Res. Bull. 101, 190–198 (2018). https://doi.org/10.1016/j.materresbull.2018.01.026

    Article  CAS  Google Scholar 

  45. P. Thakur, R. Sharma, M. Kumar, S.C. Katyal, N.S. Negi, N. Thakur, V. Sharma, P. Sharma, Super paramagnetic la doped Mn-Zn nano ferrites: dependence on dopant content and crystallite size. Mater. Res. Express. 3, 075001 (2016). https://doi.org/10.1088/2053-1591/3/7/075001

    Article  ADS  CAS  Google Scholar 

  46. Y. Khan, E. Kneller, Structure and magnetic moment of zinc-substituted γ iron oxide. J. Magn. Magn. Mater. 7, 9–11 (1978)

    Article  ADS  Google Scholar 

  47. Z.Ž Lazarević, Č Jovalekić, V.N. Ivanovski, A. Rečnik, A. Milutinović, B. Cekić, N.Ž Romčević, Characterization of partially inverse spinel ZnFe2O4 with high saturation magnetization synthesized via soft mechanochemically assisted route. J. Phys. Chem. Solids. 75, 869–877 (2014)

    Article  ADS  Google Scholar 

  48. S. Torkian, A. Ghasemi, R. Shoja Razavi, Cation distribution and magnetic analysis of wideband microwave absorptive CoxNi1−xFe2O4 ferrites. Ceram. Int. 43, 6987–6995 (2017). https://doi.org/10.1016/j.ceramint.2017.02.124

    Article  CAS  Google Scholar 

  49. R.E. El Shater, E.H. El-Ghazzawy, M.K. El-Nimr, Study of the sintering temperature and the sintering time period effects on the structural and magnetic properties of M-type hexaferrite BaFe12O19. J. Alloys Compd. 739, 327–334 (2018)

    Article  Google Scholar 

  50. Y. Yafet, C. Kittel, Antiferromagnetic arrangements in ferrites. Phys. Rev. 87, 290 (1952)

    Article  ADS  CAS  Google Scholar 

  51. M. Sugimoto, The past, present, and future of ferrites. J. Am. Ceram. Soc. 82, 269–280 (1999)

    Article  CAS  Google Scholar 

  52. M. Ergüt, D. Uzunoğlu, A. Özer, Efficient decolourization of malachite green with biosynthesized iron oxide nanoparticles loaded carbonated hydroxyapatite as a reusable heterogeneous Fenton-like catalyst. J. Environ. Sci. Health Part A 54(8), 786–800 (2019)

    Article  Google Scholar 

  53. H. Zhang, G. Li, L. Deng, H. Zeng, Z. Shi, Heterogeneous activation of hydrogen peroxide by cysteine intercalated layered double hydroxide for degradation of organic pollutants: Performance and mechanism. J. Colloid Interface Sci. 543, 183–191 (2019). https://doi.org/10.1016/j.jcis.2019.02.059

    Article  ADS  CAS  PubMed  Google Scholar 

  54. R. Qu, B. Xu, L. Meng, L. Wang, Z. Wang, Ozonation of indigo enhanced by carboxylated carbon nanotubes: performance optimization, degradation products, reaction mechanism and toxicity evaluation. Water Res. 68, 316–327 (2014). https://doi.org/10.1016/j.watres.2014.10.017

    Article  CAS  Google Scholar 

  55. F.F. Mohamed, P.M. Allah, A.P. Mehdi, M. Baseem, Photoremoval of Malachite Green (MG) using advanced oxidation process. Res. J. Chem. Environ. 15(3), 65–70 (2011)

    CAS  Google Scholar 

  56. Y. Hu, Y. Li, J. He, T. Liu, K. Zhang, X. Huang, L. Kong, J. Liu, EDTA-Fe(III) Fenton-like oxidation for the degradation of malachite green. J. Environ. Manag. 226, 256–263 (2018). https://doi.org/10.1016/j.jenvman.2018.08.029

    Article  CAS  Google Scholar 

  57. S. Hashemian, Fenton-like oxidation of malachite green solutions: Kinetic and thermodynamic study. J. Chem. (2013). https://doi.org/10.1155/2013/809318

    Article  Google Scholar 

  58. A. Bellal, Wet hydrogen peroxide catalytic oxidation of malachite green over Fe2O3/Kaolin catalyst: optimization of reaction parameters, (2021) 1–7. https://www.researchgate.net/publication/355467298 Wet.

  59. A. Serrano-Martínez, M.T. Mercader-Ros, I. Martínez-Alcalá, C. Lucas-Abellán, J.A. Gabaldón, V.M. Gómez-López, Degradation and toxicity evaluation of azo dye Direct red 83:1 by an advanced oxidation process driven by pulsed light. J. Water Process. Eng. 37, 101530 (2020). https://doi.org/10.1016/j.jwpe.2020.101530

    Article  Google Scholar 

  60. A. Verma, S. Thakur, G. Mamba, Prateek, R.K. Gupta, P. Thakur, V.K. Thakur, Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int. J. Biol. Macromol. 148, 1130–1139 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.142.

  61. I. Hasan, A. Bassi, K.H. Alharbi, I.I. Binsharfan, R.A. Khan, A. Alslame, Sonophotocatalytic degradation of malachite green by nanocrystalline chitosan-ascorbic acid@nife2 o4 spinel ferrite. Coatings. 10, 1–19 (2020). https://doi.org/10.3390/coatings10121200

    Article  CAS  Google Scholar 

  62. M.S.C. Sandeep Thakur, Removal of Malachite Green Dye from aqueous solution by Fenton Oxidation, (2016) 254–259.

  63. G.H. Dang, T.T. Le, A.K. Ta, T.N. Ho, T.V. Pham, T.V. Doan, T.H. Luong, Removal of Congo red and malachite green from aqueous solution using heterogeneous Ag/ZnCo-ZIF catalyst in the presence of hydrogen peroxide. Green Process Synth. 9(1), 567–77 (2020)

    Article  Google Scholar 

  64. M. Yuan, X. Fu, J. Yu, Y. Xu, J. Huang, Q. Li, D. Sun, Green synthesized iron nanoparticles as highly efficient fenton-like catalyst for degradation of dyes. Chemosphere. 261, 127618 (2020). https://doi.org/10.1016/j.chemosphere.2020.127618

    Article  CAS  PubMed  Google Scholar 

  65. A.H. Gemeay, M.E. El-halwagy, R.G. El-sharkawy, A.B. Zaki, Chelation mode impact of copper ( II ) -aminosilane complexes immobilized onto graphene oxide as an oxidative catalyst. J. Environ. Chem. Eng. 5, 2761–2772 (2017). https://doi.org/10.1016/j.jece.2017.05.020

    Article  CAS  Google Scholar 

  66. Z. Harrache, M. Abbas, T. Aksil, M. Trari, Thermodynamic and kinetics studies on adsorption of Indigo Carmine from aqueous solution by activated carbon. Microchem. J. 144, 180–189 (2019). https://doi.org/10.1016/j.microc.2018.09.004

    Article  CAS  Google Scholar 

  67. K.C. Das, S.S. Dhar, Remarkable catalytic degradation of malachite green by zinc supported on hydroxyapatite encapsulated magnesium ferrite (Zn/HAP/MgFe2O4) magnetic novel nanocomposite. J. Mater. Sci. 55, 4592–4606 (2020). https://doi.org/10.1007/s10853-019-04294-x

    Article  ADS  CAS  Google Scholar 

  68. S. Jauhar, S. Singhal, M. Dhiman, Manganese substituted cobalt ferrites as efficient catalysts for H2O2 assisted degradation of cationic and anionic dyes: their synthesis and characterization. Appl. Catal. A 486, 210–218 (2014). https://doi.org/10.1016/j.apcata.2014.08.020

    Article  CAS  Google Scholar 

  69. D. Badmapriya, I.V. Asharani, Dye degradation studies catalysed by green synthesized iron oxide nanoparticles. Int. J. ChemTech Res. 9, 409–416 (2016)

    CAS  Google Scholar 

  70. Z.H. Jaffari, S.M. Lam, J.C. Sin, H. Zeng, Boosting visible light photocatalytic and antibacterial performance by decoration of silver on magnetic spindle-like bismuth ferrite. Mater. Sci. Semicond. Process. 1(101), 103–15 (2019)

    Article  Google Scholar 

  71. E.M. Mostafa, E. Amdeha, Enhanced photocatalytic degradation of malachite green dye by highly stable visible-light-responsive Fe-based tri-composite photocatalysts. Environ. Sci. Pollut. Res. 29, 69861–69874 (2022). https://doi.org/10.1007/s11356-022-20745-6

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AHG: conceptualization, supervision, investigation reviewing, and editing. ESS: methodology, writing—original drafts preparation. AHM: conceptualization, supervision. MMA-G: investigation formal analysis, reviewing. REE-S: investigation formal analysis, reviewing, and editing. RK: reviewing, and editing.

Corresponding authors

Correspondence to Reda E. El-Shater or Mohamed M. Abdel-Galeil.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shater, R.E., Abdel-Galeil, M.M., Gemeay, A.H. et al. Synthesis and structural, magnetic, and catalytic characteristics Ag–Cr doped Zn nanoferrite series for dye degradation utilizing advanced oxidation processes. J Mater Sci: Mater Electron 35, 271 (2024). https://doi.org/10.1007/s10854-024-11964-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11964-3

Navigation