Skip to main content
Log in

Investigation on spray pyrolyzed RMnO3 [R = Y, er, Yb] hexamanganite thin films for their suitability in photovoltaics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, ferroelectric-photovoltaics have come under the spotlight as a potential class of materials for application in photovoltaic devices. However, the broad bandgap of these ferroelectric-photovoltaic materials causes them to have modest photocurrents. To overcome this challenge hexamanganites can be used as alternatives to achieve high photovoltaic efficiency as it has a small band gap. Here we present a stable, non-toxic, and cost-efficient hexamanganite RMnO3 [R = Y, Er, Yb] thin films prepared and optimized by spray pyrolysis technique. The formation of the single phase is confirmed by XRD analysis. Morphological studies show grains are uniform and closely packed and the grain size increases with the decrease in ionic radii of rare-earth ions. From the UV Visible spectroscopic study, narrow optical band gap is observed for the films. With a carrier concentration of around 10+14 cm−3, Hall measurements proved that the films are p-type semiconductors. The maximum photoresponse was exhibited in the visible region for YMnO3 and ErMnO3 films and in the near IR region for YbMnO3 films. This research illuminates the exploration of stable oxide semiconductors with a small band gap for the suitability in futuristic solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available.

References

  1. S. Sharma, K.K. Jain, A. Sharma, Mater. Sci. Appl. 6, 1145 (2015)

    CAS  Google Scholar 

  2. R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Nat. Photonics. 9, 61 (2015)

    Article  ADS  CAS  Google Scholar 

  3. B. Kolb, A.M. Kolpak, Chem. Mater. 27, 5899 (2015)

    Article  CAS  Google Scholar 

  4. I. Grinberg, D.V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, A.M. Rappe, Nature. 503, 509 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. H. Han, S. Song, J.H. Lee, K.J. Kim, G.W. Kim, T. Park, H.M. Jang, Chem. Mater. 27, 7425 (2015)

    Article  CAS  Google Scholar 

  6. X. Huang, T.R. Paudel, S. Dong, E.Y. Tsymbal, Phys. Rev. B Condens. Matter Mater. Phys. 92, 125201 (2015)

    Article  ADS  Google Scholar 

  7. B. Lorenz, ISRN Condens. Matter Phys. (2013). https://doi.org/10.1155/2013/497073

    Article  Google Scholar 

  8. R.V. Pisarev, M. Fiebig, Ferroelectrics. 303, 113 (2004)

    Article  ADS  CAS  Google Scholar 

  9. K. Uusi-Esko, M. Karppinen, Chem. Mater. 23, 1835 (2011)

    Article  CAS  Google Scholar 

  10. H. Das, A.L. Wysocki, Y. Geng, W. Wu, Nat. Commun. (2014). https://doi.org/10.1038/ncomms3998

    Article  PubMed  Google Scholar 

  11. Y. Yuan, Z. Xiao, B. Yang, J. Huang, J. Mater. Chem. A Mater. 2, 6027 (2014)

    Article  CAS  Google Scholar 

  12. B. Munisha, B. Mishra, J. Nanda, J. Rare Earths. 41, 19 (2023)

    Article  CAS  Google Scholar 

  13. O. Polat, F.M. Coskun, M. Coskun, Z. Durmus, Y. Caglar, M. Caglar, A. Turut, J. Mater. Sci. Mater. Electron. 30, 3443 (2019)

    Article  CAS  Google Scholar 

  14. K.T. Butler, J.M. Frost, A. Walsh, Energy Environ. Sci. 8, 383 (2015)

    Article  Google Scholar 

  15. C. Paillard, X. Bai, I.C. Infante, M. Guennou, G. Geneste, M. Alexe, J. Kreisel, B. Dkhil, Adv. Mater. 28, 5153 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. P. Lopez-Varo, L. Bertoluzzi, J. Bisquert, M. Alexe, M. Coll, J. Huang, J.A. Jimenez-Tejada, T. Kirchartz, R. Nechache, F. Rosei, Phys. Rep. 653, 1 (2016)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. J.E. Spanier, V.M. Fridkin, A.M. Rappe, A.R. Akbashev, A. Polemi, Y. Qi, Z. Gu, S.M. Young, C.J. Hawley, D. Imbrenda, G. Xiao, A.L. Bennett-Jackson, C.L. Johnson, Nat. Photonics. 10, 611 (2016)

    Article  ADS  CAS  Google Scholar 

  18. R. Nechache, W. Huang, S. Li, F. Rosei, Nanoscale. 8, 3237 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Y. Romaguera-Barcelay, J. Agostinho Moreira, G. González-Aguilar, A. Almeida, J.P. Araujo, J. Electroceram. 26, 44 (2011)

    Article  CAS  Google Scholar 

  20. H. Kitahata, K. Tadanaga, T. Minami, N. Fujimura, T. Ito, J. Solgel Sci. Technol. 19, 589 (2000)

    Article  CAS  Google Scholar 

  21. Z. Joshi, D. Dhruv, K.N. Rathod, H. Boricha, K. Gadani, D.D. Pandya, A.D. Joshi, P.S. Solanki, N.A. Shah, Prog. Solid State Chem. 49, 23 (2018)

    Article  CAS  Google Scholar 

  22. K. Gadani, M.J. Keshvani, D. Dhruv, H. Boricha, K.N. Rathod, P. Prajapati, A.D. Joshi, D.D. Pandya, N.A. Shah, P.S. Solanki, J. Alloys Compd. 719, 47 (2017)

    Article  CAS  Google Scholar 

  23. B. Dabrowski, S. Kolesnik, A. Baszczuk, O. Chmaissem, T. Maxwell, J. Mais, J. Solid State Chem. 178, 629 (2005)

    Article  ADS  CAS  Google Scholar 

  24. B.S. Nagaraja, A. Rao, P. Poornesh, G.S. Okram, J. Supercond. Nov. Magn. 31, 2271 (2018)

    Article  CAS  Google Scholar 

  25. T. Wendari, S. Putra, N. Arief, A. Mufti, J. Insani, G.R. Baas, Blake, J. Alloys Compd. 860, 158440 (2021)

    Article  CAS  Google Scholar 

  26. J. Tauc, Mater. Res. Bull. 3, 37 (1968)

    Article  CAS  Google Scholar 

  27. L. Chen, G. Zheng, G. Yao, P. Zhang, S. Dai, Y. Jiang, H. Li, B. Yu, H. Ni, S. Wei, ACS Omega. 5, 8766 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. R. Szostak, A. Morais, S.A. Carminati, S.V. Costa, P.E. Marchezi, A.F. Nogueira, Future Semicond. Oxides Nexr-Gener. Solar Cells (2018). https://doi.org/10.1016/B978-0-12-811165-9.00010-7

    Article  Google Scholar 

Download references

Acknowledgements

The Author (Inchara D R) is very thankful to Manipal Academy of Higher Education, Manipal for the T.M.A Pai fellowship (financial support) and Dr. Gowrish K Rao, MIT, MAHE, Manipal for the photoresponse measurements.

Funding

This work was supported by Manipal Academy of Higher Education, Manipal by providing T.M.A Pai fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Formal Analysis, Investigation, Writing—Original Draft: IDR, Supervision, Writing—Review and Editing: MD, Resource (Providing Spray Pyrolysis facility), Review and Editing: GSC, Investigation, Data Curation: MSM.

Corresponding author

Correspondence to Mamatha D. Daivajna.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inchara, D.R., Gurumurthy, S.C., Murari, M.S. et al. Investigation on spray pyrolyzed RMnO3 [R = Y, er, Yb] hexamanganite thin films for their suitability in photovoltaics. J Mater Sci: Mater Electron 35, 282 (2024). https://doi.org/10.1007/s10854-024-11962-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11962-5

Navigation