Skip to main content
Log in

Visible light-driven photocatalytic removal of tetracycline healthcare waste by retrievable ZnFe2O4/MWCNTs nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tetracycline (TC), a popular antibiotic for treating bacterial diseases in living things, poses a serious threat to the aquatic environment. Even though several standard techniques to remove TC antibiotics from water solutions have been tried, they have not been successful. Therefore, a catalyst works in photocatalytic degradation to use light energy to speed up the breakdown of a chemical molecule. The hydrothermally synthesized ZnFe2O4/MWCNTs composite nanocatalyst was characterized. The study found that MWCNTs could be successfully incorporated into ZnFe2O4 nanoparticles, which slowed down the rate at which charge carriers recombined after merging with MWCNTs. In a batch reactor, the catalyst’s effectiveness was then evaluated by looking at the weight ratio change of the nanocomposite, the initial concentration of TC antibiotics, the impacts of pH and the contact time. When investigating the TC degradation using ZnFe2O4 and MWCNTs as separate pure materials, the same operational conditions were used. ZnFe2O4/MWCNTs achieved a degradation efficiency of 98.3% for TC at a pH value of 7. This result was attained after a reaction duration of 120 min, TC solution concentration of 50 mg/L, nanocomposite dose of 0.6 g/L of TZ 04 and power density of 120 W/m2. The degradation rate of TC was determined utilizing the pseudo-first-order approach. It was observed that the photocatalysts retained their initial characteristics through four successive applications, exhibiting only a slight decrease in removal efficiency while maintaining an optimal balance of catalyst, TC concentration and pH. The study’s findings showed that the ZnFe2O4/MWCNTs nanocomposite was highly effective in TC degradation. It has the potential to work effectively as a catalyst for the removal and degradation of pharmaceutical waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

Data are available on request due to privacy or other restrictions.

References

  1. A. Serrà, E. Gómez, J. Michler, L. Philippe, Facile cost-effective fabrication of Cu@Cu2O@CuO–microalgae photocatalyst with enhanced visible light degradation of tetracycline. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127477

    Article  Google Scholar 

  2. E.M. Bayan, L.E. Pustovaya, M.G. Volkova, Recent advances in TiO2-based materials for photocatalytic degradation of antibiotics in aqueous systems. Environ. Technol. Innov. (2021). https://doi.org/10.1016/j.eti.2021.101822

    Article  Google Scholar 

  3. A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and applications. Catalysts 3, 189–218 (2013). https://doi.org/10.3390/catal3010189

    Article  CAS  Google Scholar 

  4. F. Saadati, N. Keramati, M.M. Ghazi, Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: a review. Crit. Rev. Environ. Sci. Technol. 46, 757–782 (2016). https://doi.org/10.1080/10643389.2016.1159093

    Article  CAS  Google Scholar 

  5. N. Belhouchet, B. Hamdi, H. Chenchouni, Y. Bessekhouad, Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites. J. Photochem. Photobiol. A Chem. 372, 196–205 (2019). https://doi.org/10.1016/j.jphotochem.2018.12.016

    Article  CAS  Google Scholar 

  6. A. Fiaz, D. Zhu, J. Sun, Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives. Environ. Sci. Eur. (2021). https://doi.org/10.1186/s12302-021-00505-y

    Article  Google Scholar 

  7. M. Ahmadi, H. Ramezani Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite. J. Environ. Manage. 186, 55–63 (2017). https://doi.org/10.1016/j.jenvman.2016.09.088

    Article  CAS  PubMed  Google Scholar 

  8. C.H. Chen, Y.H. Liang, W. De Zhang, ZnFe2O4/MWCNTs composite with enhanced photocatalytic activity under visible-light irradiation. J. Alloys Compd. 501, 168–172 (2010). https://doi.org/10.1016/j.jallcom.2010.04.072

    Article  CAS  Google Scholar 

  9. W. Wang, P. Serp, P. Kalck, J.L. Faria, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. J. Mol. Catal. A Chem. 235, 194–199 (2005). https://doi.org/10.1016/j.molcata.2005.02.027

    Article  CAS  Google Scholar 

  10. D. Qiao, Z. Li, J. Duan, X. He, Adsorption, and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.125952

    Article  Google Scholar 

  11. A. Makofane, D.E. Motaung, N.C. Hintsho-Mbita, Photocatalytic degradation of methylene blue and sulfisoxazole from water using biosynthesized zinc ferrite nanoparticles. Ceram. Int. 47, 22615–22626 (2021). https://doi.org/10.1016/j.ceramint.2021.04.274

    Article  CAS  Google Scholar 

  12. I. Raza, M. Hussain, A.N. Khan, T. Katzwinkel, J. Feldhusen, Properties of light weight multi walled carbon nano tubes (MWCNTs) nano-composites. Int. J. Lightweight Mater. Manuf. 4, 195–202 (2021). https://doi.org/10.1016/j.ijlmm.2020.09.003

    Article  CAS  Google Scholar 

  13. N.B. Rachna, A. Singh, Agarwal, preparation, characterization, properties and applications of nano Zinc Ferrite. Mater. Today Proc. 5, 9148–9155 (2018). https://doi.org/10.1016/j.matpr.2017.10.035

    Article  CAS  Google Scholar 

  14. Y. Cao, X. Lei, Q. Chen, C. Kang, W. Li, B. Liu, Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4. J. Photochem. Photobiol. A Chem. 364, 794–800 (2018). https://doi.org/10.1016/j.jphotochem.2018.07.023

    Article  CAS  Google Scholar 

  15. R. Paper, G.S.Y. Kumar, H.S.B. Naik, A.S. Roy, K.N. Harish, R. Viswanath, Synthesis, optical and electrical properties of ZnFe2O4 nanocomposites regular paper. Nanomater. Nanotechnol. 2, 1–6 (2012)

    Google Scholar 

  16. G.H. Sonawane, S.P. Patil, S.H. Sonawane, Nanocomposites, and Its Applications, in Applications of Nanomaterials. (Elsevier, Amsterdam, 2018), pp.1–22

    Google Scholar 

  17. S. Karuppaiah, R. Annamalai, A. Muthuraj, S. Kesavan, R. Palani, S. Ponnusamy, E.R. Nagarajan, S. Meenakshisundaram, Efficient photocatalytic degradation of ciprofloxacin and bisphenol A under visible light using Gd2WO6 loaded ZnO/bentonite nanocomposite. Appl. Surf. Sci. 481, 1109–1119 (2019). https://doi.org/10.1016/j.apsusc.2019.03.178

    Article  ADS  CAS  Google Scholar 

  18. M. Asgharian, M. Mehdipourghazi, B. Khoshandam, N. Keramati, Photocatalytic degradation of methylene blue with synthesized rGO/ZnO/Cu. Chem. Phys. Lett. 719, 1–7 (2019). https://doi.org/10.1016/j.cplett.2019.01.037

    Article  ADS  CAS  Google Scholar 

  19. X. He, T. Kai, P. Ding, Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review. Environ. Chem. Lett. 19, 4563–4601 (2021). https://doi.org/10.1007/s10311-021-01295-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M.H. Abdurahman, A.Z. Abdullah, N.F. Shoparwe, A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: synergistic mechanism and degradation pathway. Chem. Eng. J. 413, 127412 (2021). https://doi.org/10.1016/J.CEJ.2020.127412

    Article  CAS  Google Scholar 

  21. A. Kmita, A. Pribulova, M. Holtzer, P. Futas, A. Roczniak, Use of specific properties of zinc ferrite in innovative technologies. Arch. Metall. Mater. 61, 2141–2146 (2016). https://doi.org/10.1515/amm-2016-0289

    Article  CAS  Google Scholar 

  22. A. Awadallah-F, S. Al-Muhtaseb, Carbon nanoparticles-decorated carbon nanotubes. Sci. Rep. 10, 1–7 (2020). https://doi.org/10.1038/s41598-020-61726-4

    Article  CAS  Google Scholar 

  23. A. Behera, D. Kandi, S. Mansingh, S. Martha, K. Parida, Facile synthesis of ZnFe2O4@RGO nanocomposites towards photocatalytic ciprofloxacin degradation and H2 energy production. J. Colloid Interface Sci. 556, 667–679 (2019). https://doi.org/10.1016/j.jcis.2019.08.109

    Article  ADS  CAS  PubMed  Google Scholar 

  24. M. Malakootian, A. Nasiri, A. Asadipour, E. Kargar, Facile and green synthesis of ZnFe2O4@CMC as a new magnetic nanophotocatalyst for ciprofloxacin degradation from aqueous media. Process. Saf. Environ. Prot. 129, 138–151 (2019). https://doi.org/10.1016/j.psep.2019.06.022

    Article  CAS  Google Scholar 

  25. S. Singhal, R. Sharma, C. Singh, S. Bansal, Enhanced photocatalytic degradation of methylene blue using ZnFe2O4 /MWCNT composite synthesized by hydrothermal method. Indian J. Mater. Sci. 2013, 1–6 (2013). https://doi.org/10.1155/2013/356025

    Article  ADS  Google Scholar 

  26. S. Li, J. Hu, Photolytic and photocatalytic degradation of tetracycline: effect of humic acid on degradation kinetics and mechanisms. J. Hazard. Mater. 318, 134–144 (2016). https://doi.org/10.1016/j.jhazmat.2016.05.100

    Article  CAS  PubMed  Google Scholar 

  27. A. Fakhri, S. Behrouz, Photocatalytic properties of tungsten trioxide (WO3) nanoparticles for degradation of Lidocaine under visible and sunlight irradiation. Sol. Energy 112, 163–168 (2015). https://doi.org/10.1016/j.solener.2014.11.014

    Article  ADS  CAS  Google Scholar 

  28. W.H. Tan, S.L. Lee, C.T. Chong, TEM and XRD analysis of carbon nanotubes synthesised from flame. Key Eng. Mater. 723, 470–475 (2017). https://doi.org/10.4028/www.scientific.net/KEM.723.470

    Article  Google Scholar 

  29. R. Shu, W. Li, X. Zhou, D. Tian, G. Zhang, Y. Gan, J. Shi, J. He, Facile preparation and microwave absorption properties of RGO/MWCNTs/ZnFe2O4 hybrid nanocomposites. J. Alloys Compd. 743, 163–174 (2018). https://doi.org/10.1016/j.jallcom.2018.02.016

    Article  CAS  Google Scholar 

  30. P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Physikalische Klasse 1918(1918), 98–100 (1918)

    Google Scholar 

  31. J.I. Langford, A.J.C. Wilson, Seherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. (1978). https://doi.org/10.1107/S0021889878012844

    Article  Google Scholar 

  32. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater Charact 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  33. L. Guo, Y. He, D. Chen, B. Du, W. Cao, Y. Lv, Z. Ding, Hydrothermal synthesis, and microwave absorption properties of nickel ferrite/multiwalled carbon nanotubes composites. Coatings (2021). https://doi.org/10.3390/coatings11050534

    Article  Google Scholar 

  34. F.A. Hezam, O. Nur, M.A. Mustafa, Synthesis, structural, optical, and magnetic properties of NiFe2O4/MWCNTs/ZnO hybrid nanocomposite for solar radiation driven photocatalytic degradation and magnetic separation. Colloids Surf. A Physicochem. Eng. Aspects (2020). https://doi.org/10.1016/j.colsurfa.2020.124586

    Article  Google Scholar 

  35. R. Mishra, S.P. Tripathy, D. Sinha, K.K. Dwivedi, S. Ghosh, D.T. Khathing, M.M. Uller, C.D. Fink, W.H. Chung, Optical and electrical properties of some electron and proton irradiated polymers. NIM-B 168, 59 (2000)

    Article  ADS  CAS  Google Scholar 

  36. F.A. Hezam, N.O. Khalifa, O. Nur, M.A. Mustafa, Synthesis, and magnetic properties of Ni0.5 Mgx Zn0.5-x Fe2O4 (0.0 ≤ x ≤ 0.5) nanocrystalline spinel ferrites. Mater. Chem. Phys. 257, 123770 (2021). https://doi.org/10.1016/j.matchemphys.2020.123770

    Article  CAS  Google Scholar 

  37. F. Taleshi, The effect of carbon nanotube on band gap energy of TiO2 nanoparticles. J. Appl. Spectrosc. 82, 303–306 (2015). https://doi.org/10.1007/s10812-015-0102-3

    Article  ADS  CAS  Google Scholar 

  38. M.M. Eid, Characterization of Nanoparticles by FTIR and FTIR-Microscopy, in Handbook of Consumer Nanoproducts. (Springer, Singapore, 2021), pp.1–30

    Google Scholar 

  39. J.P. Singh, G. Dixit, R.C. Srivastava, H.M. Agrawal, R. Kumar, Raman, and Fourier-transform infrared spectroscopic study of nanosized zinc ferrite irradiated with 200 MeV Ag15+ beam. J. Alloys Compd. 551, 370–375 (2013). https://doi.org/10.1016/j.jallcom.2012.10.006

    Article  CAS  Google Scholar 

  40. J. Bosco Franklin, G. Theophil Anand, G. Merline Sujitha, S. John Sundaram, A. Dhayal Raj, K. Kaviyarasu, Synthesis and characterization of zinc ferrite nanoparticles using prunus dulcis (almond gum) for antibacterial applications. Mater. Today Proc. 68, 593–601 (2022). https://doi.org/10.1016/j.matpr.2022.08.429

    Article  CAS  Google Scholar 

  41. M. Bahgat, A.A. Farghali, W.M.A. El Rouby, M.H. Khedr, Synthesis, and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications. J. Anal. Appl. Pyrolysis 92, 307–313 (2011). https://doi.org/10.1016/j.jaap.2011.07.002

    Article  CAS  Google Scholar 

  42. A. Tawfik, The Role of Carbon Nanotubes in Enhancement of Photocatalysis, in Syntheses and Applications of Carbon Nanotubes and Their Composites. ed. by S. Suzuki (InTech, London, 2013)

    Google Scholar 

  43. Y. Gogotsi, J.A. Libera, M. Yoshimura, Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15(12), 2591 (2014)

    Article  ADS  Google Scholar 

  44. P. Galinetto, B. Albini, M. Bini, M.C. Mozzati, Raman spectroscopy in Zinc Ferrites Nanoparticles. Raman Spectroscopy. (2018). https://doi.org/10.5772/intechopen.72864

    Article  Google Scholar 

  45. B. Albini, S. Restelli, M. Ambrosetti, M. Bini, F. D’Amico, M.C. Mozzati, P. Galinetto, Raman spectroscopy in pure and doped zinc ferrites nanoparticles. J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-10464-0

    Article  Google Scholar 

  46. J.P. Singh, R.C. Srivastava, H.M. Agrawal, R. Kumar, Micro-Raman investigation of nanosized zinc ferrite: effect of crystallite size and fluence of irradiation. J. Raman Spectrosc. 42, 1510–1517 (2011). https://doi.org/10.1002/jrs.2902

    Article  ADS  CAS  Google Scholar 

  47. S. Thota, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Micro Raman, Mossbauer, and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn. J. Phys. Chem. Solids 91, 136–144 (2016). https://doi.org/10.1016/j.jpcs.2015.12.013

    Article  ADS  CAS  Google Scholar 

  48. R. Shu, G. Zhang, X. Wang, X. Gao, M. Wang, Y. Gan, J. Shi, J. He, Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem. Eng. J. 337, 242–255 (2018). https://doi.org/10.1016/j.cej.2017.12.106

    Article  CAS  Google Scholar 

  49. Y. Piao, V.N. Tondare, C.S. Davis, J.M. Gorham, E.J. Petersen, J.W. Gilman, K. Scott, A.E. Vladár, A.R. Hight Walker, Comparative study of multiwall carbon nanotube nanocomposites by Raman SEM, and XPS measurement techniques. Compos. Sci. Technol. (2021). https://doi.org/10.1016/j.compscitech.2021.108753

    Article  Google Scholar 

  50. J.A. Lynch, Q.T. Birch, T.H. Ridgway, M.E. Birch, Quantification of carbon nanotubes by raman analysis. Ann. Work Expo. Health. 62, 604–612 (2018). https://doi.org/10.1093/annweh/wxy016

    Article  CAS  PubMed  Google Scholar 

  51. V. Lakshmi Ranganatha, S. Pramila, G. Nagaraju, B.S. Udayabhanu, C.M. Surendra, Cost-effective and green approach for the synthesis of zinc ferrite nanoparticles using Aegle Marmelos extract as a fuel: catalytic, electrochemical, and microbial applications. J. Mater. Sci. Mater. Electron. 31, 17386–17403 (2020). https://doi.org/10.1007/s10854-020-04295-6

    Article  CAS  Google Scholar 

  52. H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218 (2002)

    Article  ADS  CAS  Google Scholar 

  53. H. Fu, Z.J. Du, W. Zou, H.Q. Li, C. Zhang, Simple fabrication of strongly coupled cobalt ferrite/carbon nanotube composite based on deoxygenation for improving lithium storage. Carbon N Y. 65, 112–123 (2013). https://doi.org/10.1016/j.carbon.2013.08.006

    Article  CAS  Google Scholar 

  54. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B 104, 2794–2809 (2000). https://doi.org/10.1021/jp993592k

    Article  CAS  Google Scholar 

  55. F. Yu, J. Ma, S. Han, Adsorption of tetracycline from aqueous solutions onto multi-walled carbon nanotubes with different oxygen contents. Sci. Rep. (2014). https://doi.org/10.1038/srep05326

    Article  PubMed  PubMed Central  Google Scholar 

  56. L. Zhang, X. Song, X. Liu, L. Yang, F. Pan, J. Lv, Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem. Eng. J. 178, 26–33 (2011). https://doi.org/10.1016/j.cej.2011.09.127

    Article  CAS  Google Scholar 

  57. A.A. Babaei, E.C. Lima, A. Takdastan, N. Alavi, G. Goudarzi, M. Vosoughi, G. Hassani, M. Shirmardi, Removal of tetracycline antibiotic from contaminated water media by multi-walled carbon nanotubes: operational variables, kinetics, and equilibrium studies. Water Sci. Technol. 74, 1202–1216 (2016). https://doi.org/10.2166/wst.2016.301

    Article  CAS  PubMed  Google Scholar 

  58. M. Abdel Salam, M.A. Gabal, A.Y. Obaid, Preparation and characterization of magnetic multi-walled carbon nanotubes/ferrite nanocomposite and its application for the removal of aniline from aqueous solution. Synth. Met. 161, 2651–2658 (2012). https://doi.org/10.1016/j.synthmet.2011.09.038

    Article  CAS  Google Scholar 

  59. D.F. Ollis, Kinetics of photocatalyzed reactions: five lessons learned. Front. Chem. (2018). https://doi.org/10.3389/fchem.2018.00378

    Article  PubMed  PubMed Central  Google Scholar 

  60. C.L. Wang, Fractional kinetics of photocatalytic degradation. J. Adv. Dielectr. (2018). https://doi.org/10.1142/S2010135X18500340

    Article  Google Scholar 

  61. G.V. Morales, E.L. Sham, R. Cornejo, E.M. Farfan Torres, Kinetic studies of the photocatalytic degradation of tartrazine. Latin Am. Appl. Res. 42, 45–49 (2012)

    Google Scholar 

  62. L. Bouna, B. Rhouta, F. Maury, A. Jada, F. Senocq, M.C. Lafont, Photocatalytic activity of TiO2/stevensite nanocomposites for the removal of Orange G from aqueous solutions. Clay Miner. 49, 417–428 (2014). https://doi.org/10.1180/claymin.2014.049.3.05

    Article  ADS  CAS  Google Scholar 

  63. J. Liu, M. Dong, S. Zuo, Y. Yu, Solvothermal preparation of TiO2/montmorillonite and photocatalytic activity. Appl. Clay Sci. 43, 156–159 (2009). https://doi.org/10.1016/j.clay.2008.07.016

    Article  CAS  Google Scholar 

  64. K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: review. Sustain. Mater. Technol. (2020). https://doi.org/10.1016/j.susmat.2019.e00140

    Article  Google Scholar 

  65. T. Liu, G. Yuan, G. Lv, Y. Li, L. Liao, S. Qiu, C. Sun, Synthesis of a novel catalyst MnO/CNTs for microwave-induced degradation of tetracycline. Catalysts (2019). https://doi.org/10.3390/catal9110911

    Article  Google Scholar 

  66. E. Bilgin Simsek, Z. Balta, P. Demircivi, Novel shungite based Bi2WO6 carbocatalyst with high photocatalytic degradation of tetracycline under visible light irradiation. J. Photochem. Photobiol. A Chem. (2019). https://doi.org/10.1016/j.jphotochem.2019.05.012

    Article  Google Scholar 

  67. X. Zheng, J. Yuan, J. Shen, J. Liang, J. Che, B. Tang, G. He, H. Chen, A carnation-like rGO/Bi2O2CO3/BiOCl composite: efficient photocatalyst for the degradation of ciprofloxacin. J. Mater. Sci. Mater. Electron. 30, 5986–5994 (2019). https://doi.org/10.1007/s10854-019-00898-w

    Article  CAS  Google Scholar 

  68. M.A. Iqubal, R.K. Sharma, Studies on interaction of ribonucleotides with zinc ferrite nanoparticles using spectroscopic and microscopic techniques. Karbala Int. J. Modern Sci. 1, 49–59 (2015). https://doi.org/10.1016/j.kijoms.2015.06.001

    Article  Google Scholar 

  69. N.T. Abdel-Ghani, G.A. El-Chaghaby, F.S. Helal, Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J. Adv. Res. 6, 405–415 (2015). https://doi.org/10.1016/j.jare.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  70. T.S. Algarni, A.M. Al-Mohaimeed, A.B. Al-Odayni, N.A.Y. Abduh, Activated carbon/ZnFe2O4 nanocomposite adsorbent for efficient removal of crystal violet cationic dye from aqueous solutions. Nanomaterials (2022). https://doi.org/10.3390/nano12183224

    Article  PubMed  PubMed Central  Google Scholar 

  71. M. Khodadadi, M.H. Ehrampoush, M.T. Ghaneian, A. Allahresani, A.H. Mahvi, Synthesis and characterizations of FeNi3@SiO2@TiO2 nanocomposite and its application in photo- catalytic degradation of tetracycline in simulated wastewater. J. Mol. Liq. 255, 224–232 (2018). https://doi.org/10.1016/j.molliq.2017.11.137

    Article  CAS  Google Scholar 

  72. L. Yue, S. Wang, G. Shan, W. Wu, L. Qiang, L. Zhu, Novel MWNTs-Bi2WO6 composites with enhanced simulated solar photoactivity toward adsorbed and free tetracycline in water. Appl. Catal. B 176–177, 11–19 (2015). https://doi.org/10.1016/j.apcatb.2015.03.043

    Article  CAS  Google Scholar 

  73. W. Shi, F. Guo, S. Yuan, In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Appl. Catal. B 209, 720–728 (2017). https://doi.org/10.1016/j.apcatb.2017.03.048

    Article  CAS  Google Scholar 

  74. X. Wang, L. Jiang, K. Li, J. Wang, D. Fang, Y. Zhang, D. Tian, Z. Zhang, D.D. Dionysiou, Fabrication of novel Z-scheme SrTiO3/MnFe2O4 system with double-response activity for simultaneous microwave-induced and photocatalytic degradation of tetracycline and mechanism insight. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.125981

    Article  PubMed  PubMed Central  Google Scholar 

  75. B. Luo, D. Xu, D. Li, G. Wu, M. Wu, W. Shi, M. Chen, Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. ACS Appl. Mater. Interfaces 7, 17061–17069 (2015). https://doi.org/10.1021/acsami.5b03535

    Article  CAS  PubMed  Google Scholar 

  76. Y. Pan, X. Yuan, L. Jiang, H. Wang, H. Yu, J. Zhang, Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123310

    Article  Google Scholar 

  77. A.A. Isari, M. Mehregan, S. Mehregan, F. Hayati, R. Rezaei Kalantary, B. Kakavandi, Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3/CNT heterojunction nanocomposite under US and visible light irradiations: a novel hybrid system. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2020.122050

    Article  PubMed  Google Scholar 

  78. J. Di, M. Ji, J. Xia, X. Li, W. Fan, Q. Zhang, H. Li, Bi4O5Br2 ultrasmall nanosheets in situ strong coupling to MWCNT and improved photocatalytic activity for tetracycline hydrochloride degradation. J. Mol. Catal. A Chem. 424, 331–341 (2016). https://doi.org/10.1016/j.molcata.2016.08.029

    Article  CAS  Google Scholar 

  79. S. Shanavas, A. Priyadharsan, E.I. Gkanas, R. Acevedo, P.M. Anbarasan, Highly efficient catalytic degradation of tetracycline and ibuprofen using visible light driven novel Cu/Bi2Ti2O7/rGO nanocomposite: kinetics, intermediates and mechanism. J. Ind. Eng. Chem. 72, 512–528 (2019). https://doi.org/10.1016/j.jiec.2019.01.008

    Article  CAS  Google Scholar 

  80. R. Jain, S. Sikarwar, S. Goyal, Semiconductor Sensitized Photodegradation of Antibiotic Tetracycline in Water using Heterogeneous Nanoparticles (NISCAIR-CSIR, India, 2016)

    Google Scholar 

  81. B.M. Everhart, M. Baker-Fales, B. McAuley, E. Banning, H. Almkhelfe, T.C. Back, P.B. Amama, Hydrothermal synthesis of carbon nanotube-titania composites for enhanced photocatalytic performance. J. Mater. Res. 35, 1451–1460 (2020). https://doi.org/10.1557/jmr.2020.97

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Centennial Physics Ph.D Instrumentation Centre, Department of Physics, Loyola College, Chennai-600 034.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by DV, JRRM and JSJP, formal analysis, methodology resources and validation were performed by ACD, RK, MS, MJ and VARM The first draft of the manuscript was written by Victor Antony Raj M and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Victor Antony Raj M..

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, D., Joe Raja Ruban, M., Joselene Suzan Jennifer, P. et al. Visible light-driven photocatalytic removal of tetracycline healthcare waste by retrievable ZnFe2O4/MWCNTs nanocomposite. J Mater Sci: Mater Electron 35, 279 (2024). https://doi.org/10.1007/s10854-024-11959-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11959-0

Navigation