Skip to main content
Log in

Excellent microwave-absorbing performance in nanofiber nanocomposites by biomass conversion of sodium alginate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sodium alginate, as one of natural polymer existing in marine plants, can function as precursor of carbon-based microwave-absorbing materials with the advantages of low cost, easy degradation, and non-toxicity. However, its resultant carbon-based materials suffer from the poor impedance matching and low lossy capacity due to no magnetism and small amount of interface. In this work, CoNi alloy nanoparticles were uniformly located on the surface of carbon nanofibers (CNFs) derived from the sodium alginate fabricated by the electrospinning and solvothermal method to construct the CNFs/CoNi nanocomposites. The results show that CNFs/CoNi nanocomposites have the good absorbing performance, where the minimum RL of − 56.96 dB at a very thin thickness of 1.63 mm and an effective absorption bandwidth of 5.3 GHz (12.7–18 GHz) at a very thin thickness of 1.7 mm are obtained, respectively. The excellent wave-absorbing performance is mainly attributed to the appropriate impedance matching and high attenuation factor. The multilevel interfacial polarization from the interfaces between CoNi nanoparticles and carbon nanofiber makes the main contribution to the wave-absorbing performance at the whole test frequency range, while the natural ferromagnetic resonance of CoNi composition dominates the low frequency range and eddy current loss plays a major role at higher frequency range. This work develops a simple method for designing high-performance microwave-absorbing nanocomposites by using the marine raw materials of sodium alginate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [Hua Yuan], upon reasonable request.

References

  1. P. Xie, H. Li, B. He et al., J. Mater. Chem. C 6(32), 8812–8822 (2018)

    CAS  Google Scholar 

  2. Y. Huang, Interdiscip. Mater. 1(3), 323–329 (2022)

    MathSciNet  Google Scholar 

  3. J. Yan, H. Huang, J. Tong et al., Interdiscip. Mater. 1(3), 330–353 (2022)

    Google Scholar 

  4. B. Zhang, L. Ren, Y. Wang et al., Interdiscip. Mater. 1(3), 354–372 (2022)

    Google Scholar 

  5. C. Luo, T. Jiao, Y. Tang et al., Adv. Eng. Mater. 20(6), 1701168 (2018)

    Google Scholar 

  6. X. Chen, Z. Jia, A. Feng et al., J. Colloid Interface Sci. 553, 465–474 (2019)

    CAS  PubMed  ADS  Google Scholar 

  7. S. Wang, Y. Zhao, H. Xue et al., Mater. Lett. 223, 186–189 (2018)

    CAS  Google Scholar 

  8. X. Wang, Z. Gu, E. Ang et al., Interdiscip. Mater. 1(3), 417–433 (2022)

    Google Scholar 

  9. G. Wang, Y. Liang, H. Liu et al., Interdiscip. Mater. 1(3), 434–444 (2022)

    Google Scholar 

  10. F. Wang, X. Liao, H. Wang et al., Interdiscip. Mater. 1(4), 517–525 (2022)

    Google Scholar 

  11. Q. Yang, L. Yu, Y. Dong et al., Carbon 158, 931 (2020)

    Google Scholar 

  12. X. Gong, Q. Liu, W. Zhao et al., J. Mater. Sci. Mater. Electron. 33(16), 13166–13179 (2022)

    CAS  Google Scholar 

  13. Z. Wu, C. Yao, Z. Meng et al., Adv. Sustain. Syst. 6(6), 2100454 (2022)

    CAS  Google Scholar 

  14. Y. Ma, P. Qi, J. Ju et al., Composites B. 162, 671–677 (2019)

    CAS  Google Scholar 

  15. X. Zhang, S. Qi, Y. Zhao et al., RSC Adv. 10(54), 32561–32568 (2020)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. T. Zhao, X. Wang, L. Zhao et al., Diam. Relat. Mater. 99, 107525 (2019)

    CAS  ADS  Google Scholar 

  17. D. Jin, X. Yang, Y. Wei, J. Mater. Sci. Mater. Electron. 33(7), 4510–4522 (2022)

    CAS  Google Scholar 

  18. M. Kimi, M. Jaidie, S. Pang, J. Phys. Chem. Solids 112, 50–53 (2018)

    CAS  ADS  Google Scholar 

  19. I. Pieta, A. Rathi, P. Pieta et al., Appl. Catal. B 244, 272–283 (2019)

    CAS  Google Scholar 

  20. W. Liu, J. Wang, N. Cai et al., J. Environ. Chem. Eng. 9(5), 106003 (2021)

    CAS  Google Scholar 

  21. Y. Wang, G. Wang, X. Zhang et al., J. Mater. Sci. Technol. 103, 34–41 (2022)

    CAS  Google Scholar 

  22. H. Lin, Y. Chen, Mater. Chem. Phys. 85(1), 171–175 (2004)

    CAS  ADS  Google Scholar 

  23. C. Li, X. Yin, T. Wang et al., Chem. Mater. 21(20), 4984–4992 (2009)

    CAS  Google Scholar 

  24. L. Zhang, Y. Liu, Y. You et al., Interdiscip. Mater. 2(1), 91–110 (2023)

    Google Scholar 

  25. H. Wang, F. Liu, R. Yu, J. Wu, Interdiscip. Mater. 1(2), 196–212 (2022)

    Google Scholar 

  26. F. Xiong, Y. Jiang, L. Cheng et al., Interdiscip. Mater. 1(1), 140–147 (2022)

    Google Scholar 

  27. G. Fan, Z. Wang, H. Ren et al., Scr. Mater. 190, 1–6 (2021)

    CAS  Google Scholar 

  28. G. Fan, Z. Wang, K. Sun et al., J. Mater. Sci. Technol. 61, 125–131 (2021)

    CAS  Google Scholar 

  29. P. Xie, Z. Zhang, K. Liu et al., Carbon 125, 1–8 (2017)

    CAS  Google Scholar 

  30. Z. Zhang, M. Liu, M. Ibrahim et al., Adv. Compos. Hybrid Mater. 5(2), 1054–1066 (2022)

    CAS  Google Scholar 

  31. P. Xie, Z. Shi, M. Feng et al., Adv. Compos. Hybrid Mater. 5(2), 679–695 (2022)

    Google Scholar 

  32. M. Liu, H. Wu, Y. Wu et al., Adv. Compos. Hybrid Mater. 5, 2021–2030 (2022)

    CAS  Google Scholar 

  33. H. Wu, Y. Zhong, Y. Tang et al., Adv. Compos. Hybrid Mater. 5, 419–430 (2021)

    Google Scholar 

  34. Y. Jiang, X. Fu, Z. Zhang et al., J. Alloys Compd. 804, 305–313 (2019)

    CAS  Google Scholar 

  35. K. Sun, X. Yang, Y. Lei et al., J. Alloys Compd. 930, 167446 (2023)

    CAS  Google Scholar 

  36. K. Sun, C. Wang, J. Tian et al., Adv. Funct. Mater. 34, 2306747 (2023)

    Google Scholar 

  37. S. Xia, Z. Shi, K. Sun et al., Mater. Horiz. 10, 2476–2486 (2023)

    CAS  PubMed  Google Scholar 

  38. Z. Wang, K. Sun, P. Xie et al., Acta Mater. 185, 412–419 (2020)

    CAS  ADS  Google Scholar 

  39. P. Xie, Z. Wang, K. Sun et al., Appl. Phys. Lett. 111, 112903 (2017)

    ADS  Google Scholar 

  40. P. Xie, W. Sun, Y. Liu et al., Carbon 129, 598–606 (2018)

    CAS  Google Scholar 

  41. P. Xie, Z. Zhang, Z. Wang et al., Research 2019, 1021368 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Liu, H. Wu, Y. Wang et al., Adv. Compos. Hybrid Mater. 6, 217 (2023)

    CAS  Google Scholar 

  43. H. Wu, Z. Zhang, C. Wang et al., Adv. Compos. Hybrid Mater. 6, 206 (2023)

    CAS  Google Scholar 

  44. Z. Leng, Z. Yang, X. Tang et al., Adv. Compos. Hybrid Mater. 6, 195 (2023)

    CAS  Google Scholar 

  45. Y. Qu, P. Xie, Y. Zhou et al., Ceram. Int. 49, 37407–37414 (2023)

    CAS  Google Scholar 

  46. Y. Hao, Z. Leng, C. Yu et al., Carbon 212, 118156 (2023)

    CAS  Google Scholar 

  47. P. Xie, Y. Liu, M. Feng et al., Adv. Compos. Hybrid Mater. 4, 173–185 (2021)

    CAS  Google Scholar 

  48. C. Li, Y. Ge, X. Jiang et al., J. Mater. Sci. Mater. Electron. 30, 3124–3136 (2019)

    CAS  Google Scholar 

  49. Y. Shen, Y. Wei, J. Li et al., J. Mater. Sci. Mater. Electron. 30, 3365–3377 (2019)

    CAS  Google Scholar 

  50. P. Liu, V. Ng, Z. Yao et al., Mater. Lett. 229, 286–289 (2018)

    CAS  Google Scholar 

  51. D. Liu, Y. Du, F. Wang et al., Carbon 157, 478–485 (2020)

    CAS  Google Scholar 

  52. H. Yang, T. Ye, Y. Lin et al., Appl. Surf. Sci. 357, 1289–1293 (2015)

    CAS  ADS  Google Scholar 

  53. C. Sun, Y. Guo, X. Xu et al., Composites A 92, 33–41 (2017)

    CAS  Google Scholar 

  54. Y. Wan, J. Xiao, C. Li et al., Magn. Magn. Mater. 399, 252–259 (2016)

    CAS  ADS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from the National Natural Science Foundation of China (Nos. 52072193, U22A20131), the Shandong Provincial Natural Science Foundation (Nos. ZR2021JQ16 and ZR2023YQ040), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (KF2217), the Shandong Provincial College Students’ innovation and entrepreneurship training program (S202311065122).

Funding

This study was supported by the National Natural Science Foundation of China (Grant Nos. 52072193, U22A20131), the Shandong Provincial Natural Science Foundation (Grant Nos. ZR2021JQ16, ZR2023YQ040), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (Grant No. KF2217), the Shandong Provincial College Students’ innovation and entrepreneurship training program (Grant No. S202211065062).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, characterization, and analysis were performed by YD, HS, JM and FW. YD, MH, DL, PX and HY wrote the manuscript. HY gave financial support for this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Meng Hao, Dechun Liu, Ruixia Yang or Hua Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Sun, H., Hao, M. et al. Excellent microwave-absorbing performance in nanofiber nanocomposites by biomass conversion of sodium alginate. J Mater Sci: Mater Electron 35, 241 (2024). https://doi.org/10.1007/s10854-024-11953-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11953-6

Navigation