Skip to main content
Log in

Multifaceted improvement of varistors by PVA for desired electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of polyvinyl alcohol (PVA) on the slurry, granules, green bodies, and sintered varistors were investigated. The results showed that PVA inclusion as a binder not only influenced the mechanical properties of the granules, but also significantly impacted on the dispersibility of the slurry, the microstructure's uniformity, the compactness, and the element doping homogeneity of the varistors. These effects greatly affected the electrical properties, including the non-linear characteristics and the energy withstand capability. The optimal PVA concentration was found to be 0.7 wt%, resulting in varistors with excellent electrical properties: breakdown voltage gradient of 247.7 V/mm, nonlinearity coefficient of 41.0, residual voltage ratio of 1.71 under an 8/20 μs impulse current of 5 kA, and 100% pass rate under 2 ms rectangular waveform impulses of 900 A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. M. Houabes, R. Metz, Rare earth oxides effects on both the threshold voltage and energy absorption capability of ZnO varistors. Ceram. Int. 33(7), 1191–1197 (2007)

    CAS  Google Scholar 

  2. D.R. Clarke, Varistor ceramics. J. Am. Ceram. Soc. 82(3), 485–502 (1999)

    CAS  Google Scholar 

  3. F. Abedsaeidi, A. Amini, F. Norouzian, M.K. Javan, M.M. Shahraki, The effect of grinding media on suspensions, microstructures, and comprehensive electrical properties of ZnO varistors. J. Mater. Sci. 33(27), 21727–21736 (2022)

    CAS  Google Scholar 

  4. Z. Cheng, R. Li, Y. Long, J. Li, S. Li, K. Wu, Power loss transition of stable ZnO varistor ceramics: Role of oxygen adsorption on the stability of interface states at the grain boundary. J. Adv. Ceram. 12(5), 972–983 (2023)

    CAS  Google Scholar 

  5. T. Tian, L.Y. Zheng, M. Podlogar, Z.Y. Man, X.Z. Ruan, X. Shi, S. Bernik, G.R. Li, Influence of Ca-doping on the nonlinear properties of novel ZnO-Cr2O3-based varistor ceramics. J. Eur. Ceram. Soc. 42(5), 2268–2273 (2022)

    CAS  Google Scholar 

  6. C.H. Lu, N. Chyi, H.W. Wong, W.J. Hwang, Effects of additives and secondary phases on the sintering behavior of zinc oxide-based varistors. Mater. Chem. Phys. 62(2), 164–168 (2000)

    CAS  Google Scholar 

  7. C. Tsonos, A. Kanapitsas, D. Triantis, C. Anastasiadis, I. Stavrakas, P. Pissis, E. Neagu, Interface states and MWS polarization contributions to the dielectric response of low voltage ZnO varistor. Ceram. Int. 37(1), 207–214 (2011)

    CAS  Google Scholar 

  8. M. Guo, X. Zhao, W.D. Shi, B.Y. Zhang, K.N. Wu, J.Y. Li, Simultaneously improving the electrical properties and long-term stability of ZnO varistor ceramics by reversely manipulating intrinsic point defects. J. Eur. Ceram. Soc. 42(1), 162–168 (2022)

    CAS  Google Scholar 

  9. K. Hembram, T.N. Rao, R.S. Srinivasa, A.R. Kulkarni, CaO doped ZnO–Bi2O3 varistors: grain growth mechanism, structure and electrical properties. Ceram. Int. 47(1), 1229–1237 (2021)

    CAS  Google Scholar 

  10. S. Roy, D. Das, T.K. Roy, Nonlinear electrical properties of ZnO-V2O5 based rare earth (Er2O3) added varistors. J. Electron. Mater. 48(9), 5650–5661 (2019)

    CAS  ADS  Google Scholar 

  11. A. Sedky, T.A. El-Brolossy, S.B. Mohamed, Correlation between sintering temperature and properties of ZnO ceramic varistors. J. Phys. Chem. Solids 73(3), 505–510 (2012)

    CAS  ADS  Google Scholar 

  12. J. Warycha, W. Mielcarek, G. Lesiuk, On the relationship between modification of Bi2O3 by Sb and type of grain boundaries in ZnO-based varistors. Eng. Fail. Anal. 122, 105251 (2021)

    CAS  Google Scholar 

  13. S.L. Jiang, Y.P. Wang, X.S. Zhang, Y.C. Xu, P. Liu, Y.K. Zeng, Q. Wang, G.Z. Zhang, Effect of Zn doping on stability of ZnO varistors under high pulse-current stress. Ceram. Int. 41(9), 11611–11617 (2015)

    CAS  Google Scholar 

  14. J. Rao, A. Yu, C.L. Shao, X.F. Zhou, Construction of hollow and mesoporous ZnO microsphere: a facile synthesis and sensing property. ACS Appl. Mater. Interfaces 4(10), 5346–5352 (2012)

    CAS  PubMed  Google Scholar 

  15. L. Zhang, J.H. Gao, W.F. Liu, Q.R. Guo, S.T. Li, J.Y. Li, Simultaneously enhanced electrical stability and nonlinearity in ZnO varistor ceramics: Role of Si-stabilized δ-Bi2O3 phase. J. Eur. Ceram. Soc. 41(4), 2641–2647 (2021)

    Google Scholar 

  16. R. Puyané, I. Guy, R. Metz, High performance varistor discs obtained from chemically synthesized doped zinc oxide powder. J. Sol-Gel Sci. Technol. 13(1), 575–578 (1998)

    Google Scholar 

  17. M.A. Ramirez, M. Cilense, P.R. Bueno, E. Longo, J.A. Varela, Comparison of non-Ohmic accelerated ageing of the ZnO- and SnO2-based voltage dependent resistors. J. Phys. D 42(1), 015503 (2009)

    ADS  Google Scholar 

  18. B.P. Singh, S. Bhattacharjee, L. Besra, Optimisation of performance of dispersants in aqueous plasma dissociated zircon suspension. Ceram. Int. 28(4), 413–417 (2002)

    CAS  Google Scholar 

  19. L.Y. Wang, G.Y. Tang, Z.K. Xu, Preparation and electrical properties of multilayer ZnO varistors with water-based tape casting. Ceram. Int. 35(1), 487–492 (2009)

    Google Scholar 

  20. M. Abdullah, S.R. Malik, M.H. Iqbal, M.M. Sajid, N.A. Shad, S.Z. Hussain, W. Razzaq, Y. Javed, Sedimentation and stabilization of nano-fluids with dispersant. Colloid. Surface. A. 554, 86–92 (2018)

    CAS  Google Scholar 

  21. S. Diener, H. Schubert, A. Held, N. Katsikis, J. Günster, A. Zocca, Influence of the dispersant on the parts quality in slurry-based binder jetting of SiC ceramics. J. Am. Ceram. Soc. 105(12), 7072–7086 (2022)

    CAS  Google Scholar 

  22. R.F. Xu, Y.H. Feng, Q.H. He, W.X. Yan, M. Yuan, B.X. Hu, Review and perspectives of anionic dispersants for coal-water slurry. Energy Fuel 37(7), 4816–4834 (2023)

    CAS  Google Scholar 

  23. Y.N. Wei, Y.X. Liu, Study of dispersion mechanisms of modified SiC powder: electrostatic repulsion and steric hindrance mechanism. New J. Chem. 43(35), 14036–14044 (2019)

    CAS  Google Scholar 

  24. X.J. Ruan, X. Ren, W.T. Zhou, Q. Cheng, Z. Yao, W.Q. Yu, L.J. Jin, L.Y. Shi, Effects of dispersant content and pH on dispersion of suspension, microstructures and electrical properties of ZnO varistors. Ceram. Int. 46(9), 14134–14142 (2020)

    CAS  Google Scholar 

  25. S. Baklouti, T. Chartier, J.F. Baumard, Mechanical properties of dry-pressed ceramic green products: the effect of the binder. J. Am. Ceram. Soc. 80(8), 1992–1996 (1997)

    CAS  Google Scholar 

  26. S. Baklouti, J. Bouaziz, T.C. Chartier, J.F. Baumard, Binder burnout and evolution of the mechanical strength of dry-pressed ceramics containing poly(vinyl alcohol). J. Eur. Ceram. Soc. 21(8), 1087–1092 (2001)

    CAS  Google Scholar 

  27. A. Boursier, G.G. d’Esdra, E. Lintingre, C. Frétigny, F. Lequeux, L. Talini, Cold compression of ceramic spray-dried granules: Role of the spatial distribution of the binder. Ceram. Int. 46(7), 9680–9690 (2020)

    CAS  Google Scholar 

  28. J. Chen, H. Yang, C.M. Xu, J.G. Cheng, Y.W. Lu, Preparation of ZrO2 microspheres by spray granulation. Powder Technol. 385, 234–241 (2021)

    CAS  Google Scholar 

  29. S. Tanaka, C.C. Pin, K. Uematsu, Effect of organic binder segregation on sintered strength of dry-pressed alumina. J. Am. Ceram. Soc. 89(6), 1903–1907 (2006)

    CAS  Google Scholar 

  30. T.H. Ho, S.J. Chang, C.C. Li, Effect of surface hydroxyl groups on the dispersion of ceramic powders. Mater. Chem. Phys. 172, 1–5 (2016)

    CAS  ADS  Google Scholar 

  31. C.J. Moll, K. Meister, J. Kirschner, H.J. Bakker, Surface structure of solutions of poly (vinyl alcohol) in water. J. Phys. Chem. B 122(47), 10722–10727 (2018)

    CAS  PubMed  Google Scholar 

  32. S. Sau, S. Pandit, S. Kundu, Crosslinked poly (vinyl alcohol): Structural, optical and mechanical properties. Surf. Interfaces 25, 101198 (2021)

    CAS  Google Scholar 

  33. D. Sharma, J. Sharma, R.K. Arya, S. Ahuja, S. Agnihotri, Surfactant enhanced drying of waterbased poly(vinyl alcohol) coatings. Prog. Org. Coat. 125, 443–452 (2018)

    CAS  Google Scholar 

  34. S.Z. Zhang, E. Duque-Redondo, A. Kostiuchenko, J.S. Dolado, G. Ye, Molecular dynamics and experimental study on the adhesion mechanism of polyvinyl alcohol (PVA) fiber in alkali-activated slag/fly ash. Cement. Concrete. Res. 145, 106452 (2021)

    CAS  Google Scholar 

  35. Y.D. Xie, X.J. Lin, H.F. Li, T. Ji, Effect of polyvinyl alcohol powder on the bonding mechanism of a new magnesium phosphate cement mortar. Constr. Build. Mater. 239, 117871 (2020)

    CAS  Google Scholar 

  36. M.P. Albano, L.B. Garrido, Aqueous tape casting of yttria stabilized zirconia. Mater. Sci. Eng. A 420(1), 171–178 (2006)

    Google Scholar 

  37. Z.Y. Zhu, Z.B. Yin, D.B. Hong, J.T. Yuan, Preparation of complex-shaped Al2O3/SiCp/SiCw ceramic tool by two-step microwave sintering. Ceram. Int. 46(17), 27362–27372 (2020)

    CAS  Google Scholar 

  38. W.F. Liu, L. Zhang, F.Y. Kong, K.N. Wu, S.T. Li, J.Y. Li, Enhanced voltage gradient and energy absorption capability in ZnO varistor ceramics by using nano-sized ZnO powders. J. Alloys Compd. 828, 154252 (2020)

    CAS  Google Scholar 

  39. M. Mukae, K. Tsuda, I. Nagasawa, Non-ohmic properties of ZnO-rare earth metal oxide-Co3O4 ceramics. Jpn. J. Appl. Phys. 16(8), 1361 (1977)

    CAS  ADS  Google Scholar 

  40. P.F. Meng, X. Yang, J.B. Wu, Q.Y. Xie, J.M. He, J. Hu, J.L. He, Stable electrical properties of ZnO varistor ceramics with multiple additives against the AC accelerated aging process. Ceram. Int. 45(8), 11105–11108 (2019)

    CAS  Google Scholar 

  41. H.-I. Hsiang, C.-C. Chen, C.-C. Kao, Effect of ZnBi2O4 and Bi2O3 addition on the densification, microstructure, and varistor properties of ZnO varistors. Ceram. Int. 49(2), 2244–2249 (2023)

    CAS  Google Scholar 

  42. K. Mukae, K. Tsuda, I. Nagasawa, Capacitance-vs-voltage characteristics of ZnO varistors. J. Appl. Phys. 50(6), 4475–4476 (2008)

    ADS  Google Scholar 

  43. L.H. Cheng, G.R. Li, K.Y. Yuan, L. Meng, L.Y. Zheng, Improvement in nonlinear properties and electrical stability of ZnO varistors with B2O3 additives by nano-coating method. J. Am. Ceram. Soc. 95(3), 1004–1010 (2012)

    CAS  Google Scholar 

  44. H.F. Zhao, J. Hu, S.M. Chen, Q.Y. Xie, J.L. He, Tailoring the high-impulse current discharge capability of ZnO varistor ceramics by doping with Ga2O3. Ceram. Int. 42(4), 5582–5586 (2016)

    CAS  Google Scholar 

  45. M.Y. Wang, X. Ren, Z.Y. Li, W.L. You, H.B. Jiang, W.Q. Yu, L.J. Jin, Z. Yao, L.Y. Shi, A unique tuning effect of Mg on grain boundaries and grains of ZnO varistor ceramics. J. Eur. Ceram. Soc. 41(4), 2633–2640 (2021)

    CAS  Google Scholar 

  46. N. S. Bell, J. Cesarano, J. A. Voigt, S. J. Lockwood, D. B. Dimos (2004) Colloidal processing of chemically prepared zinc oxide varistors: Part I: Milling and dispersion of powder, J. Mater. Res. 19 (5): 1333–1340.

Download references

Acknowledgements

The authors acknowledge the support provided by the Shanghai Natural Science Foundation (Grant No. 17ZR1410300).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

XR contributed to the study conception and design. Material preparation, data collection and analysis were performed by LY Yang and QC. The first draft of the manuscript was written by LY. YN, LG, XL, JY, ZY and LS commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xin Ren.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 371 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Yang, L., Cheng, Q. et al. Multifaceted improvement of varistors by PVA for desired electrical properties. J Mater Sci: Mater Electron 35, 217 (2024). https://doi.org/10.1007/s10854-024-11949-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11949-2

Navigation