Skip to main content
Log in

Characterizing the molecules of methylene blue doped glycine magnesium chloride (MDGMC) semi-organic crystal in virtue of quantum computational and analytical approach for photonics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Doping crystalline materials with chemical dyes impacts their optical, mechanical, and electrical behavior significantly as well. Nontoxic, water-soluble, and highly photosensitive methylene blue (C16H18ClN3S) dye had been doped into the optically active glycine magnesium chloride semi-organic compound. Thus, the vapour diffusion approach was used for nucleation of the methylene blue doped glycine magnesium chloride crystal (MDGMC). The single crystal X-ray diffraction (SCXRD) tool was adopted to evaluate a newly formed MDGMC crystal exhibiting trigonal in structure,\({P}_{31}\) space group lattice parameters such as \(a=b\ne c\) and with \({{V}}=234.93\) Å3. PXRD analyses have confirmed the existence of hybrid compositions with dye and the crystallite dimensions of the chemical substances. The electronic shift was observed at 210 nm cutoff wavelength, exhibiting an optical bandgap about 5.1356 eV, and its vibrations were investigated through spectroscopic instruments such as UV–NIR and FTIR. The outermost layer of the developed crystal material was analyzed using X-rays and scanning electron microscope, along with energy dispersive X-ray analysis (EDAX) for chemical collaboration. The practical and theoretical perspectives of our research were combined with the help of the Gaussian 09W software and its basic set DFT/B3LYP. In connection with this, we computed the molecular electrostatic surface potential (MESP) to evaluate the electrostatic potentials of MDGMC in the range of \(-8.733{\text{e}}^{-2}\;\text{to}\;+8.733{\text{e}}^{-2}\,\text{a.u.}\) the materials interacted in their optimum molecular structure. Reactivity indices and energy surface aptitudes generated HOMO–LUMO via frontiers orbitals of molecules. The Mulliken charge analysis (MCA) was used to approximate atomic values in molecules derived using DFT computations. Experimental and theoretical studies show MDGMC complex compound crystals offer superior optical and electronic activity, making them ideal for photonic equipment design due to their light sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Datasets that are assigned digital object identifiers (DOIs) by a data repository may be cited in the reference list. Data cannot be shared openly but are available on request from authors. Data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. S. Nandhini, K. Sudhakar, S. Muniyappan, P. Murugakoothan, Systematic discussions on structural, optical, mechanical, electrical and its application to NLO devices of a novel semi-organic single crystal: guanidinium tetrafluoroborate (GFB). Opt. Laser Technol. 105, 249–256 (2018). https://doi.org/10.1016/j.optlastec.2018.03.006

    Article  ADS  CAS  Google Scholar 

  2. B. Uma, K. SakthiMurugesan, S. Krishnan, R. Jayavel, B. MiltonBoaz, Growth, optical, thermal and dielectric studies of a highly polarisable semiorganic NLO crystal: bis d-phenyl glycinium sulphate monohydrate. Mater. Chem. Phys. 142, 659–666 (2013). https://doi.org/10.1016/j.matchemphys.2013.08.018

    Article  CAS  Google Scholar 

  3. S. Goel, N. Sinha, H. Yadav, A.J. Joseph, A. Hussain, B. Kumar, Optical, piezoelectric and mechanical properties of xylenol orange doped ADP single crystals for NLO applications, Arab. J. Chem. 13(1), 146–159 (2020). ISSN 1878-5352. https://doi.org/10.1016/j.arabjc.2017.03.003

  4. F. Pan, M. Shing Wong, C. Bosshard, P. Günter, V. Gramlich, Strong hydrogen bonds as a design element for developing new non-linear optical crystals: co-crystals of merocyanine dyes and phenol derivatives. Adv. Mater. Opt. Electron. 6, 261–266 (1996). https://doi.org/10.1002/(SICI)1099-0712(199609)6:5/6<261::AID-AMO279>3.0.CO;2-K

  5. J. Li, H. Nishikawa, J. Kougo, J. Zhou, S. Dai, W. Tang, X. Zhao, Y. Hisai, M. Huang, S. Aya, Development of ferroelectric nematic fluids with giant-ε dielectricity and nonlinear optical properties. Sci. Adv. 7(17), eabf5047 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. M.L. Finnegan, B.E. Bowler, Scaling properties of glycine-rich sequences in guanidine hydrochloride solutions. Biophys. J. 102(8), 1969–1978 (2012). https://doi.org/10.1016/j.bpj.2012.03.049

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. B. Gutter, W.T. Speck, H.S. Rosenkranz, A study of the photoinduced mutagenicity of methylene blue. Mutat. Res./Fundam. Mol. Mech. Mutagen. 44(2), 177–181 (1977). https://doi.org/10.1016/0027-5107(77)90075-6

  8. R. Li, J. Chen, T.C. Cesario, X. Wang, J.S. Yuan, P.M. Rentzepis, Synergistic reaction of silver nitrate, silver nanoparticles, and methylene blue against bacteria. Proc. Natl. Acad. Sci. U.S.A. 113(48), 13612–13617 (2016). https://doi.org/10.1073/pnas.1611193113

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. R. Heiner Schirmer, H. Adler, M. Pickhardt, E. Mandelkow, Lest we forget you—methylene blue …, Neurobiol. Aging 32(12), 2325.e7–2325.e16 (2011). ISSN 0197-4580. https://doi.org/10.1016/j.neurobiolaging.2010.12.012

  10. P.R. Ginimuge, S.D. Jyothi, Methylene blue: revisited. J. Anaesthesiol. Clin. Pharmacol. 26(4), 517–520 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  11. J.C.Y. Lo, M.A. Darracq, R.F. Clark, A review of methylene blue treatment for cardiovascular collapse. J. Emerg. Med. 46(5), 670–679 (2014). https://doi.org/10.1016/j.jemermed.2013.08.102

    Article  PubMed  Google Scholar 

  12. M. Oz, D.E. Lorke, M. Hasan, G.A. Petroianu, Cellular and molecular actions of methylene blue in the nervous system. Med. Res. Rev. 31(1), 93–117 (2011). https://doi.org/10.1002/med.20177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D. Kalaitzakis, A. Kouridaki, D. Noutsias, T. Montagnon, G. Vassilikogiannakis, Methylene blue as a photosensitizer and redox agent: synthesis of 5-hydroxy-1H-pyrrol-2(5H)-ones from furans. Angew. Chem. Int. Ed. 54, 6283–6287 (2015). https://doi.org/10.1002/anie.201500744

    Article  CAS  Google Scholar 

  14. R. Begum, J. Najeeb, A. Sattar, K. Naseem, A. Irfan, A.G. Al-Sehemi, Z.H. Farooqi, Chemical reduction of methylene blue in the presence of nanocatalysts: a critical review. Rev. Chem. Eng. (2019). https://doi.org/10.1515/revce-2018-0047

    Article  Google Scholar 

  15. S. Canossa, C. Graiff, D. Crocco, G. Predieri, Water structures and packing efficiency in methylene blue cyanometallate salts. Crystals 10(7), 558 (2020). https://doi.org/10.3390/cryst10070558

    Article  CAS  Google Scholar 

  16. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, K. Maegawa, W.K. Tan, G. Kawamura, K.K. Kar, A. Matsuda, Heteroatom doped graphene engineering for energy storage and conversion, Mater. Today 39, 47–65 (2020). ISSN 1369-7021. https://doi.org/10.1016/j.mattod.2020.04.010

  17. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, S.A. Moshkalev, A. Matsuda, K.K. Kar, Heteroatom doping of 2D graphene materials for electromagnetic interference shielding: a review of recent progress. Crit. Rev. Solid State Mater. Sci. 47(4), 570–619 (2022). https://doi.org/10.1080/10408436.2021.1965954

    Article  ADS  CAS  Google Scholar 

  18. R. Kumar, R.K. Singh, V.S. Tiwari, A. Yadav, R. Savu, A.R. Vaz, S.A. Moshkalev, Enhanced magnetic performance of iron oxide nanoparticles anchored pristine/N-doped multi-walled carbon nanotubes by microwave-assisted approach. J. Alloys Compd. 695, 1793–1801 (2017). https://doi.org/10.1016/j.jallcom.2016.11.010

    Article  CAS  Google Scholar 

  19. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, Gaussian 09, Revision D.01 (Gaussian Inc, Wallingford, 2010)

    Google Scholar 

  20. K. Kim, K.D. Jordan, Comparison of density functional and MP2 calculations on the water monomer and dimer. J. Phys. Chem. 98(40), 10089–10094 (1994). https://doi.org/10.1021/j100091a024

    Article  CAS  Google Scholar 

  21. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98(45), 11623–11627 (1994). https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  22. C.J. Cramer, Essentials of Computational Chemistry: Theories and Models, 2nd edn. (Wiley, Hoboken, 2004)

    Google Scholar 

  23. S.A.C. Azhagan, S. Ganesan, Crystal growth, structural, optical, thermal and NLO studies of γ-glycine single crystals. Optik 124(23), 6456–6460 (2013). https://doi.org/10.1016/j.ijleo.2013.05.030

    Article  ADS  CAS  Google Scholar 

  24. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  25. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102 (1978)

    Article  ADS  CAS  Google Scholar 

  26. A. Monshi, M.R. Forought, Modified Scherrer equation to estimate more accurately nano crystallite size using XRD. World J. Nanosci. Eng. 2, 154–160 (2012). https://doi.org/10.4236/wjnse.2012.23020

    Article  CAS  Google Scholar 

  27. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater Charact 85, 111 (2013)

    Article  CAS  Google Scholar 

  28. G.R. Dillip, G. Bhagavannarayana, P. Raghavaiah, B. Deva Prasad Raju, Effect of magnesium chloride on growth, crystalline perfection, structural, optical, thermal and NLO behavior of -glycine. Cryst. Mater. Chem. Phys. 134, 371–376 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.004

    Article  CAS  Google Scholar 

  29. S.Z.A. Ahamed, G.R. Dillip, P. Raghavaiah, K. Mallikarjuna, B. Deva Prasad Raju, Spectroscopic and thermal studies of γ-glycine crystal grown from potassium bromide for optoelectronic applications. Arab. J. Chem. 6(4), 429–433 (2013). https://doi.org/10.1016/j.arabjc.2011.06.006

    Article  CAS  Google Scholar 

  30. S.A. Roshan, C. Joseph, M.A. Ittyachen, Mater. Lett.Lett. 49, 299–302 (2001)

    Article  Google Scholar 

  31. V. Venkataramanan, S. Maheswaran, J.N. Sherwood, H.L. Bhat, J. Cryst. Growth 179, 605–610 (1997)

    Article  ADS  CAS  Google Scholar 

  32. D. Sivavishnu, R. Srineevasan, J. Johnson, Synthesis, growth, optical, band gap energy and mechanical properties of semiorganic nonlinear optical material: 2-aminopyridine potassium dihydrogen orthophosphate lithium chloride (2APKDPL) crystal. Mater. Sci. Energy Technol. 1, 205–214 (2018)

    Google Scholar 

  33. R. Swanepoel, J. Phys. E 16, 1214 (1983)

    Article  ADS  CAS  Google Scholar 

  34. S. Condurache-Bota et al., Explicit application of Swanepoel’s method for the analysis of Sb2O3 films. J. Sci. Arts 13, 335–340 (2010)

    Google Scholar 

  35. K. Sarojini, H. Krishnan, C.C. Kanakam, S. Muthu, Synthesis, structural, spectroscopic studies, NBO analysis, NLO and HOMO–LUMO of 4-methyl-N-(3-nitrophenyl) benzene sulfonamide with experimental and theoretical approaches. Spectrochim. Acta A 108, 159–170 (2013). https://doi.org/10.1016/j.saa.2013.01.060

    Article  ADS  CAS  Google Scholar 

  36. M. Habib Rahuman, S. Muthu, B.R. Raajaraman, M. Raja, H. Umamahesvari, Investigations on 2-(4-cyanophenylamino) acetic acid by FT-IR, FT-Raman, NMR and UV–Vis spectroscopy, DFT (NBO, HOMO–LUMO, MEP and Fukui function) and molecular docking studies. Heliyon (2020). https://doi.org/10.1016/j.heliyon.2020.e04976

    Article  PubMed  PubMed Central  Google Scholar 

  37. J. Murray, K. Sen, Theoretical and Computational Chemistry (Elsevier, Amsterdam, 1996), pp.649–660

    Google Scholar 

  38. K. Muthu, V. Meenatchi, M. Rajasekar, A.A. Prasad, K. Meena, R. Agilandeshwari, V. Kanagarajan, S.P. Meenakshisundaram, Combined theoretical and experimental studies on the molecular structure, spectral and Hirshfeld surface studies of NLO tris(thiourea) zinc(II) sulfate crystals. J. Mol. Struct. 1091, 210–221 (2015). https://doi.org/10.1016/j.molstruc.2015.02.085

    Article  ADS  CAS  Google Scholar 

  39. D. Jacquemin, E.A. Perpète, J. Mol. Struct. THEOCHEM 804(1–3), 31–34 (2007)

    Article  CAS  Google Scholar 

  40. R.G. Parr, L.V. Szentpaly, S. Liu, J. Am. Chem. Soc. 121(9), 1922–1924 (1999)

    Article  CAS  Google Scholar 

  41. P.K. Chattaraj, S. Giri, J. Phys. Chem. 111(43), 11116–11121 (2007)

    Article  CAS  Google Scholar 

  42. R.G. Pearson, Coord. Chem. Rev. 100, 403–425 (1990)

    Article  CAS  Google Scholar 

  43. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, A library for package-independent computational chemistry algorithms. J. Compos. Chem. 29, 839–845 (2008). https://doi.org/10.1002/jcc.20823

    Article  CAS  Google Scholar 

  44. M. Snehalatha, C. Ravikumar, I. Hubert Joe, N. Sekar, V.S. Jayakumar, Spectroscopic analysis and DFT calculations of a food additive Carmoisine. Spectrochim. Acta A 72(3), 654–662 (2009). https://doi.org/10.1016/j.saa.2008.11.017

    Article  ADS  CAS  Google Scholar 

  45. E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88(6), 899–926 (1988)

    Article  CAS  Google Scholar 

  46. E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, F. Weinhold, NBO 5.0 (Theoretical Chemistry Institute, University of Wisconsin, Madison, 2001)

    Google Scholar 

  47. M.R. Jagadeesh, H.M. Suresh Kumar, R. Ananda Kumari, Crystal growth and characterization of a semi-organic nonlinear optical (NLO) material: l-phenylalanine cadmium chloride. Can. J. Phys. 93(11), 1296–1301 (2015). https://doi.org/10.1139/cjp-2014-0571

    Article  ADS  CAS  Google Scholar 

  48. S. Sivakumar, E. Manikandan, Enhanced structural, optical, electrochemical and magnetic behavior on manganese doped tin oxide nanoparticles via chemical precipitation method. J. Mater. Sci. Mater. Electron. 30(8), 7606–7617 (2019). https://doi.org/10.1007/s10854-019-01076-8

    Article  CAS  Google Scholar 

  49. S. Sivakumar, E. Manikandan, Novel synthesis of optical photoluminescence properties and supercapacitor application on Zn2+ doping Sn1−xZnxO2 nanoparticles‖. Int. J. Sci. Res. Phys. Appl. Sci. 6, 01–13 (2018). https://doi.org/10.26438/ijsrpas/v6i6.113

    Article  Google Scholar 

  50. M. Meena, R.S. Sundararajan, E. Manikandan, M. Shalini, Diffractional, optical, electrical, NLO, and surface studies of l-asparagine monohydrate lithium sulphate (LAMLS) single crystals. J. Mater. Sci. Mater. Electron. 33(23), 18846–18857 (2022). https://doi.org/10.1007/s10854-022-08734-4

    Article  CAS  Google Scholar 

  51. M. Selvapandiyan, J. Arumugam, P. Sundaramoorthi, S. Sudhakar, Influence of MgSO4 doping on the properties of zinc Tris–thiourea sulphate (ZTS) single crystals. J. Alloys Compd. 580, 270–275 (2013)

    Article  CAS  Google Scholar 

  52. C. Sekar, R. Parimaladevi, Effect of KCl addition on crystal growth and spectral properties of glycine single crystals. Spectrochim. Acta A 74, 1160–1164 (2009)

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This study was supported by Tamil Nadu State Council for Higher Education (TNSCHE), RC No. 4000/2023 A.

Author information

Authors and Affiliations

Authors

Contributions

KT: Writing—Review and editing, Methodology, software and visualizations. KP: Supervision, Validation and funding acquisition. SG: Resources, software and revising.

Corresponding author

Correspondence to P. Kumaresan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article. The authors declare that they have no conflict of interest.

Ethical approval

There is no Human participants and/or Animals involved in the research.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamatchi, T., Kumaresan, P. & Suresh, G. Characterizing the molecules of methylene blue doped glycine magnesium chloride (MDGMC) semi-organic crystal in virtue of quantum computational and analytical approach for photonics. J Mater Sci: Mater Electron 35, 213 (2024). https://doi.org/10.1007/s10854-024-11946-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11946-5

Navigation