Skip to main content
Log in

The emergence of Griffiths phase in CaCu3Ti(4−x)MnxO12 (CCTMO, x = 1, 2 and 3) geometrically frustrated antiferromagnetic complexes perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we have reported the rare coexistence of a Griffiths phase (GP) in a complex perovskite oxide with geometrically frustrated antiferromagnetism. We have achieved this by substituting Manganese (Mn) in the titanium site of CaCu3Ti(4−x)MnxO12 (CCTMO, x = 1, 2 and 3). The occurrence of a Griffiths phase is observed when a strong contest between antiferromagnetic transition (TN) and paramagnetic (PM) occurs in the magnetic domain. As we increased the molar concentration of Manganese while substituting at titanium site in CaCu3Ti4O12, we observed the appearance of a step-like Griffiths phase. Manganese (Mn)-substituted materials exhibit paramagnetic (PM) to ferromagnetic (FM) phase transitions below CaCu3Ti3Mn1O12 (CCTM1O), CaCu3Ti2Mn2O12 (CCTM2O), and CaCu3Ti1Mn3O12 (CCTM3O), marked by a rapid step-like change in the magnetic moment due to spin ordering. The deviation of inverse magnetic susceptibility (χ−1) from Curie–Weiss behavior occurs in the temperature ranges of 75 to 190 K, 80 to 200 K, and 150 to 280 K, respectively. The emergence of the Griffiths phase before the actual PM–FM transition indicates that the inhomogeneous phase above the Curie temperature (TC), which can be defined as a Griffiths phase, is dominated by ferromagnetic interactions rather than antiferromagnetic ones. The presence of a Griffiths-like phase beyond its Curie temperature (TC) is indicated by low-field DC magnetization of the nanostructures, showing abnormal magnetic behavior. The presence of short-range magnetic correlations and ferromagnetic clusters in the system due to the size decrease is linked to this unexpected behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. K. Ghosh, C. Mazumdar, R. Ranganathan, S. Mukherjee, Griffiths phase behaviour in a frustrated antiferromagnetic intermetallic compound. Sci. Rep. 5, 15801 (2015). https://doi.org/10.1038/srep15801

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. Alam, P. Singh, K. Anand, A. Pal, S. Ghosh, A.K. Ghosh, R.K. Singh, A.G. Joshi, S. Chatterjee, Extraordinary magnetic properties of double perovskite Eu2CoMnO6 wide band gap semiconductor. J. Phys.: Condens. Matter. 32, 365802 (2020)

    CAS  PubMed  Google Scholar 

  3. Quenched disorder and the critical behavior of a partially frustrated system, (n.d.). https://www.researchgate.net/publication/9067370_Quenched_Disorder_and_the_Critical_Behavior_of_a_Partially_Frustrated_System. Accessed 28 Nov, 2023

  4. S. Zhou, Y. Guo, J. Zhao, L. He, L. Shi, Size-induced Griffiths phase and second-order ferromagnetic transition in Sm0.5Sr0.5MnO3 nanoparticles. J. Phys. Chem. C (2011). https://doi.org/10.1021/jp108553r

    Article  Google Scholar 

  5. A.K. Pramanik, A. Banerjee, Finite-size effect on evolution of Griffiths phase in manganite nanoparticles. J. Phys.: Condens. Matter (2016). https://doi.org/10.1088/0953-8984/28/35/35LT02

    Article  PubMed  Google Scholar 

  6. A.K. Pramanik, A. Banerjee, Griffiths phase and its evolution with Mn-site disorder in the half-doped manganite Pr 0.5 Sr 0.5 Mn 1− y Ga y O 3 (y= 0.0, 0.025, and 0.05). Phys. Rev. B 81, 024431 (2010). https://doi.org/10.1103/PhysRevB.81.024431

    Article  ADS  CAS  Google Scholar 

  7. M.B. Salamon, P. Lin, S.H. Chun, Colossal magnetoresistance is a Griffiths singularity. Phys. Rev. Lett. 88, 197203 (2002). https://doi.org/10.1103/PhysRevLett.88.197203

    Article  ADS  CAS  PubMed  Google Scholar 

  8. W. Jiang, X. Zhou, G. Williams, Y. Mukovskii, R. Privezentsev, Coexistence of colossal magnetoresistance, a Griffiths-like phase, and a ferromagnetic insulating ground state in single crystal La0.73Ba0.27MnO3. J. Appl. Phys. 107, 09D701 (2010). https://doi.org/10.1063/1.3335895

    Article  CAS  Google Scholar 

  9. J. Deisenhofer, D. Braak, H.-A. Krug von Nidda, J. Hemberger, R.M. Eremina, V.A. Ivanshin, A.M. Balbashov, G. Jug, A. Loidl, T. Kimura, Y. Tokura, Observation of a Griffiths phase in paramagnetic La1 − x Sr x MnO3. Phys. Rev. Lett. 95, 257202 (2005). https://doi.org/10.1103/PhysRevLett.95.257202

    Article  ADS  CAS  PubMed  Google Scholar 

  10. M. Alam, L. Ghosh, S. Majumder, P. Singh, S.V. Kumar, S. Dixit, D. Kumar, K. Anand, S. Kumari, A.K. Ghosh, Multifunctional behaviour in B-site disordered double perovskite EuPrCoMnO6. J. Phys. D 55, 255003 (2022)

    Article  ADS  Google Scholar 

  11. M.B. Salamon, S.H. Chun, Griffiths singularities and magnetoresistive manganites. Phys. Rev. B 68, 014411 (2003). https://doi.org/10.1103/PhysRevB.68.014411

    Article  ADS  CAS  Google Scholar 

  12. V.N. Krivoruchko, M.A. Marchenko, Y. Melikhov, Griffiths phase, metal-insulator transition, and magnetoresistance of doped manganites. Phys. Rev. B 82, 064419 (2010). https://doi.org/10.1103/PhysRevB.82.064419

    Article  ADS  CAS  Google Scholar 

  13. V. Kumar, A. Kumar, M.K. Verma, S. Singh, S. Pandey, V.S. Rai, D. Prajapati, T. Das, N.B. Singh, K.D. Mandal, Investigation of dielectric and electrochemical behavior of CaCu3 – xMnxTi4O12 (x = 0, 1) ceramic synthesized through semi-wet route. Mater. Chem. Phys. 245, 122804 (2020). https://doi.org/10.1016/j.matchemphys.2020.122804

    Article  CAS  Google Scholar 

  14. V. Kumar, A. Kumar, M.K. Verma, S. Singh, S. Pandey, L. Singh, N.B. Singh, K.D. Mandal, Observation of unusual Griffith’s phase behavior in quadruple perovskite oxide CaCu3Mn4O12 (CCMO) synthesized through chemical route. Arab. J. Chem. 13, 4895–4903 (2020). https://doi.org/10.1016/j.arabjc.2020.01.003

    Article  CAS  Google Scholar 

  15. K. Pal, A. Dey, R. Jana, P.P. Ray, P. Bera, L. Kumar, T.K. Mandal, P. Mohanty, M.M. Seikh, A. Gayen, Citrate combustion synthesized Al-doped CaCu3Ti4O12 quadruple perovskite: synthesis, characterization and multifunctional properties. Phys. Chem. Chem. Phys. 22, 3499–3511 (2020). https://doi.org/10.1039/C9CP05005A

    Article  CAS  PubMed  Google Scholar 

  16. V.S. Rai, D. Prajapati, M.K. Verma, V. Kumar, S. Pandey, T. Das, N.B. Singh, K.D. Mandal, Influence of Zn doping on microstructure, dielectric, and electric properties in Bi2/3Cu3Ti4O12 ceramic synthesized by the semi-wet method. J. Mater. Sci.: Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08405-4

    Article  Google Scholar 

  17. F. Li, L. Zhang, D.G. Evans, X. Duan, Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides. Colloids Surf. A 244, 169–177 (2004). https://doi.org/10.1016/j.colsurfa.2004.06.022

    Article  CAS  Google Scholar 

  18. J. Sannigrahi, S. Chattopadhyay, D. Dutta Pathak, S. Giri, S. Giri, Magnetic and electric properties of CaMn7O12 based multiferroic compounds: effect of electron doping. J. Phys. Condens. Matter: Inst. Phys. J. 25, 246001 (2013). https://doi.org/10.1088/0953-8984/25/24/246001

    Article  ADS  CAS  Google Scholar 

  19. S. Jaiswar, K.D. Mandal, Evidence of enhanced oxygen vacancy defects inducing ferromagnetism in multiferroic CaMn7O12 manganite with sintering time. J. Phys. Chem. C 121, 19586–19601 (2017). https://doi.org/10.1021/acs.jpcc.7b05415

    Article  CAS  Google Scholar 

  20. V. Kumar, S. Pandey, A. Kumar, M.K. Verma, S. Singh, V.S. Rai, D. Prajapati, T. Das, A. Sharma, C.L. Prajapat, A. Gangwar, K.D. Mandal, Investigation of dielectric, magnetic and impedance spectroscopic properties of CaCu3-XMnXTi4-XMnXO12 (X = 0.10) nano-ceramic synthesized through semi-wet route. J. Mater. Res. Technol. 9, 12936–12945 (2020). https://doi.org/10.1016/j.jmrt.2020.09.032

    Article  CAS  Google Scholar 

  21. H. Oshio, T. Kikuchi, T. Ito, A ferromagnetic interaction between Cu2 + centers through a [CrO4]2- bridge: crystal structures and magnetic properties of [{Cu(acpa)}2(µ-MO4)] (M = cr, Mo) (hacpa = N-(1-Acetyl-2-propyridene)(2-pyridylmethyl)amine). Inorg. Chem. 35, 4938–4941 (1996). https://doi.org/10.1021/ic960204+

    Article  CAS  PubMed  Google Scholar 

  22. V. Kumar, S. Pandey, M. Verma, S. Singh, V. Rai, D. Prajapati, N. Singh, C. Prajapat, A. Gangwar, K. Mandal, Study of dielectric and magnetic properties of CaCu3Ti4-XMnXO12 (X = 0 and 0.1) ceramic synthesized through semi-wet route. J. Australas. Ceram. Soc. (2022). https://doi.org/10.1007/s41779-022-00724-3

    Article  Google Scholar 

  23. S. Krohns, J. Lu, P. Lunkenheimer, V. Brize, C. Autret-Lambert, M. Gervais, F. Gervais, F. Bouree, F. Porcher, A. Loidl, Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12. Eur. Phys. J. B 72, 173–182 (2009)

    Article  ADS  CAS  Google Scholar 

  24. R. Revathy, M.R. Varma, K.P. Surendran, Observation of cluster glass and Griffiths-like phase in Fe3O4 nanostructures. Phys. Status Solidi 258, 2000341 (2021). https://doi.org/10.1002/pssb.202000341

    Article  CAS  Google Scholar 

  25. Q. Tang, X. Zhu, Structural characterization and physical properties of double perovskite La2FeReO6 + δ powders. Nanomaterials (Basel) 12, 244 (2022). https://doi.org/10.3390/nano12020244

    Article  CAS  PubMed  Google Scholar 

  26. R.B. Griffiths, Nonanalytic behavior above the critical point in a random Ising ferromagnet. Phys. Rev. Lett. 23, 17–19 (1969). https://doi.org/10.1103/PhysRevLett.23.17

    Article  ADS  Google Scholar 

  27. M.K. Majee, P. Bhobe, A. Nigam, Griffiths phase in antiferromagnetic CuCr0.95Ti0.05O2. J. Magn. Magn. Mater. (2019). https://doi.org/10.1016/j.jmmm.2019.04.065

    Article  Google Scholar 

  28. D. Yang, P. Zhao, S. Huang, T. Yang, D. Huo, Ferrimagnetism, resistivity, and magnetic exchange interactions in double perovskite La2CrMnO6. Results Phys. 12, 344–348 (2019). https://doi.org/10.1016/j.rinp.2018.11.090

    Article  ADS  Google Scholar 

  29. A. Pal, P. Singh, V.K. Gangwar, S. Ghosh, P. Prakash, S.K. Saha, A. Das, M. Kumar, A.K. Ghosh, S. Chatterjee, B-site disorder driven multiple-magnetic phases: Griffiths phase, re-entrant cluster glass, and exchange bias in Pr2CoFeO6. Appl. Phys. Lett. 114, 252403 (2019). https://doi.org/10.1063/1.5094905

    Article  ADS  CAS  Google Scholar 

  30. A. Tozri, E. Dhahri, E.K. Hlil, Impact of vacancy and na substitutions on the critical magnetic behavior in polycrystalline La0.8Pb0.2MnO3. Phys. Lett. A 375, 1528–1533 (2011). https://doi.org/10.1016/j.physleta.2011.02.038

    Article  ADS  CAS  Google Scholar 

  31. R. Nag, B. Sarkar, S. Pal, Griffiths phase and magnetocaloric behaviour in electron doped Ca0.85Sm0.15MnO3. J. Alloys Compd. 749, 385–390 (2018). https://doi.org/10.1016/j.jallcom.2018.03.279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vinod Kumar thanks the Head, Department of Chemistry, IIT (BHU) Varanasi, India, for providing financial assistance as a Teaching Assistantship.The authors are grateful to the Incharge, CIFC, and IIT (BHU) Varanasi, for providing HR-SEM, and XPS facilities.

Statements and Declarations:

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to K. D. Mandal.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Kumar, A., Singh, S. et al. The emergence of Griffiths phase in CaCu3Ti(4−x)MnxO12 (CCTMO, x = 1, 2 and 3) geometrically frustrated antiferromagnetic complexes perovskite. J Mater Sci: Mater Electron 35, 136 (2024). https://doi.org/10.1007/s10854-024-11930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-11930-z

Navigation