Skip to main content
Log in

Influence of Sm2O3 ion concentration on physical and thermal properties, and Raman gain coefficient of TeO2–Li2O–ZnO vitreous system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a vitreous matrix 65TeO2–15Li2O–20ZnO (TLZ) doped with different concentrations of Sm2O3 (0.1, 0.15, 0.2, 0.35, 0.5, and 1.0 mol%) was produced via melt-quenching technique. The influence of the concentration of Sm2O3 ions on physical and thermal properties, and the Raman gain coefficient of TLZ glass samples, has been investigated. From the X-ray diffractograms, it was obtained that adding Sm2O3 ions had no discernible effect on the overall properties of the TLZ glass samples, keeping the amorphous nature of the glass structure. In addition, it was observed that the density of the samples increased with the incorporation of the Sm3+ ions. Furthermore, the molar volume of the TLZ glass samples increased and the oxygen packing density (OPD) decreased, with the insertion of the Sm2O3. These results indicated that the Sm3+ ions are actively involved in the glass structure by forming bonds with the non-bridging oxygen (NBO) species. Another important result was the investigated sample thermal stability (ΔT) that remains constant up to a concentration of 0.15 mol% of Sm2O3 and then increases with the additional Sm2O3. In addition, the Raman analyses, for an excitation at 532 nm, revealed that the incorporation of Sm3+ ions does not significantly affect the Te–O–Te bonding environment. The refractive index of the samples was determined, and it was obtained that the refractive index increased with the incorporation of Sm3+ ions. Finally, the Raman gain coefficient was also investigated for the peaks centered at 988 and 2091 cm−1, and it exhibited a minimum value at a Sm2O3 concentration of approximately 0.5 mol%. In conclusion, these results indicate that the TLZ glass samples are good candidates for high-speed optical communications due to their interesting properties and higher Raman cross-section compared to other glassy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data analyzed during the current work are included.

References

  1. A. Murali, R.P. Sreekanth Chakradhar, J. Lakshmana Rao, EPR studies of Gd3 + ions in lithium tetra boro-tellurite and lithium lead tetra boro-tellurite glasses. Phys. B Condens. Matter. 364, 142–149 (2005). https://doi.org/10.1016/j.physb.2005.04.002

    Article  CAS  ADS  Google Scholar 

  2. S. Rada, E. Culea, M. Rada, The experimental and theoretical investigations on the structure of the gadolinium-lead-tellurate glasses. Mater. Chem. Phys. 128, 464–469 (2011). https://doi.org/10.1016/j.matchemphys.2011.03.032

    Article  CAS  Google Scholar 

  3. D. Tang, Y. Tian, D. Dorosz, X. Wang, X. Yang, Y. Liu, X. Zhang, J. Zhang, S. Xu, 2–3 μm mid-infrared luminescence of Ho3+/Yb3+ co-doped chloride-modified fluorotellurite glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 285, 121833 (2023). https://doi.org/10.1016/j.saa.2022.121833

    Article  CAS  Google Scholar 

  4. P. Vani, G. Vinitha, R. Praveena, M. Durairaj, T.C.S. Girisun, N. Manikandan, Influence of holmium ions on the structural and optical properties of barium tellurite glasses. Opt. Mater. (Amst) (2023). https://doi.org/10.1016/j.optmat.2023.113438

    Article  Google Scholar 

  5. J. Ding, C. Li, L. Xia, Y. Zhang, J. Li, Y. Zhou, A new Nd3+/Tm3+/Ho3 + tri-doped tellurite glass for multifunctional applications. Mater. Res. Bull. 150, 111777 (2022). https://doi.org/10.1016/j.materresbull.2022.111777

    Article  CAS  Google Scholar 

  6. D. Souri, H. Zaliani, E. Mirdawoodi, M. Zendehzaban, Thermal stability of sb-V2O5–TeO2 semiconducting oxide glasses using thermal analysis. Measurement 82, 19–25 (2016). https://doi.org/10.1016/j.measurement.2015.12.026

    Article  ADS  Google Scholar 

  7. D. Souri, Physical and thermal characterization and glass stability criteria of amorphous silver-vanadate-tellurate system at different heating rates: inducing critical Ag2O/V2O5 ratio. J. Non Cryst. Solids 475, 136–143 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.09.008

    Article  CAS  ADS  Google Scholar 

  8. S.F. Hosseini, D. Souri, Optical properties of tellurovanadate—molybdate glasses. J. Mater. Sci. Mater. Electron. 33, 13506–13515 (2022). https://doi.org/10.1007/s10854-022-08285-8

    Article  CAS  Google Scholar 

  9. P. Patra, K. Annapurna, Progress in materials science transparent tellurite glass-ceramics for photonics applications: a comprehensive review on crystalline phases and crystallization mechanisms. Prog Mater. Sci. 125, 100890 (2022). https://doi.org/10.1016/j.pmatsci.2021.100890

    Article  CAS  Google Scholar 

  10. M. Kubliha, M. Çelikbilek, A. Erçin, O. Bo, P. Kostka, Thermal, optical, structural, and electrical properties of ZnO–MoO3–TeO2 glasses. Ceram. Int. 49, 12950–12958 (2023). https://doi.org/10.1016/j.ceramint.2022.12.166

    Article  CAS  Google Scholar 

  11. S. Bairagi, K.S. Bartwal, G.F. Ansari, Materials today: proceedings investigations on optical and photoluminescence properties of Dy3 + doped zinc tellurite glass. Mater. Today? Proc. 80, 799–805 (2023). https://doi.org/10.1016/j.matpr.2022.11.131

    Article  CAS  Google Scholar 

  12. N.M. Yusoff, M.R. Sahar, S.K. Ghoshal, Sm3+:Ag NPs assisted modification in absorption features of magnesium tellurite glass. J. Mol. Struct. 1079, 167–172 (2015). https://doi.org/10.1016/j.molstruc.2014.09.039

    Article  CAS  ADS  Google Scholar 

  13. E.S. Yousef, H.H. Hegazy, M.M. Elokr, Y.M. Aboudeif, Raman spectroscopy and Raman gain coefficient of telluroniobium-zinc-lead oxyglasses doped with rare earth. Chalcogenide Lett. 12, 653–663 (2015)

    CAS  Google Scholar 

  14. A. Gonçalves, M.A. Ribeiro, J.V. Gunha, A. Somer, V.S. Zanuto, N.G.C. Astrath, D.T. Dias, M.A.F. Santos, C. Jacinto, E.K. Lenzi, A. Novatski, A generalized Drude–Lorentz model for refractive index behavior of tellurite glasses. J. Mater. Sci. Mater. Electron. 30, 16949–16955 (2019). https://doi.org/10.1007/s10854-019-01696-0

    Article  CAS  Google Scholar 

  15. A. Wagh, Y. Raviprakash, M.P. Ajithkumar, V. Upadhyaya, S.D. Kamath, Effect of Sm2O3 on structural and thermal properties of zinc fluoroborate glasses. Trans. Nonferrous Met. Soc. China (English Ed.) 25, 1185–1193 (2015). https://doi.org/10.1016/S1003-6326(15)63714-1

    Article  CAS  Google Scholar 

  16. V. Rodriguez, G. Guery, M. Dussauze, F. Adamietz, T. Cardinal, K. Richardson, Raman gain in tellurite glass: how combination of IR, Raman, hyper-Raman and hyper-Rayleigh brings new understandings. J. Phys. Chem. (2016). https://doi.org/10.1021/acs.jpcc.6b07627

    Article  Google Scholar 

  17. K. Damak, E. Sayed, A.S. Al-shihri, H.J. Seo, C. Rüssel, R. Maâlej, Quantifying Raman and emission gain coefficients of Ho3 + doped TeO2–ZnO–PbO–PbF2–Na2O (TZPPN) tellurite glass. J. Solid State Sci. 28, 74–80 (2014). https://doi.org/10.1016/j.solidstatesciences.2013.12.012

    Article  CAS  Google Scholar 

  18. R.F. Muniz, V.S. Zanuto, M.S. Gibin, J.V. Gunha, A. Novatski, J.H. Rohling, A.N. Medina, M.L. Baesso, Down- and up-conversion processes in Nd3/Yb3+ co-doped sodium calcium silicate glasses with concomitant Yb2+ assessment. J. Rare Earths 41, 342–348 (2023). https://doi.org/10.1016/j.jre.2022.01.020

    Article  CAS  Google Scholar 

  19. A. Gonçalves, V.S. Zanuto, G.A.S. Flizikowski, A.N. Medina, F.L. Hegeto, A. Somer, J.L. Gomes, J.V. Gunha, G.K. Cruz, C. Jacinto, N.G.C. Astrath, A. Novatski, Luminescence and upconversion processes in Er3+-doped tellurite glasses. J. Lumin. 201, 110–114 (2018). https://doi.org/10.1016/j.jlumin.2018.04.031

    Article  CAS  Google Scholar 

  20. F. Aouaini, A. Maaoui, N. Bel, H. Mohamed, M.M. Alanazi, L. Abu, E. Maati, Visible to infrared down conversion of Er3 + doped tellurite glass for luminescent solar converters. J. Alloys Compd. 894, 162506 (2022). https://doi.org/10.1016/j.jallcom.2021.162506

    Article  CAS  Google Scholar 

  21. D. Said, M.F. Malek, H. Nurhafizah, E.S. Sazali, A.L. Anis, R. Hisam, Influence of vanadium in sensitized luminescence mechanism and Judd–Ofelt analysis in Er3+/Ho3 + doped mixed ionic-electronic glass system. Opt. Mater. (Amst) (2023). https://doi.org/10.1016/j.optmat.2023.114169

    Article  Google Scholar 

  22. G. Eryurek, S. Tabanli, T. Buhari, M. Erdem, B.-Z. Glasses, Color tuning and optical temperature sensing properties of upconversion emission in Yb3+/Er3+/Tm3+ doped boro-zinctellurite glasses. ECS J. Solid State Sci. Technol. 12, 076005 (2023). https://doi.org/10.1149/2162-8777/ace550

    Article  ADS  Google Scholar 

  23. F. Ren, C. Song, Y. Cong, Y. Wu, Y. Bai, D. Zhou, Near-infrared luminescence enhancement in Yb3+/Ho3 + co-doped bismuth-tellurite glass by tailoring glass network. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.07.257

    Article  Google Scholar 

  24. M. Sheoran, P. Sehrawat, M. Kumar, R.K. Malik, Crystal structure and optical analysis of new reddish-orange Sm3+ doped BaGd2ZnO5 nano-crystalline materials for multifunctional applications. Mater. Res. Bull. 145, 111522 (2022). https://doi.org/10.1016/j.materresbull.2021.111522

    Article  CAS  Google Scholar 

  25. A. Tarafder, A.R. Molla, S. Mukhopadhyay, B. Karmakar, Fabrication and enhanced photoluminescence properties of Sm3+-doped ZnO–Al2O3–B2O3–SiO2 glass derived willemite glass–ceramic nanocomposites. Opt. Mater. (Amst). 36, 1463–1470 (2014). https://doi.org/10.1016/j.optmat.2014.03.035

    Article  CAS  ADS  Google Scholar 

  26. M. Li, D. Li, E.Y.B. Pun, H. Lin, Excitability remodeling in Sm3+-doped aluminosilicate glass phosphors. J. Alloys Compd. 966, 171652 (2023). https://doi.org/10.1016/j.jallcom.2023.171652

    Article  CAS  Google Scholar 

  27. B. Mu, J. Huang, R. Song, Y. Dong, B. Qi, Optical analysis of Dy3+/Sm3 + co-doped NaY(MoO4)2 phosphors for warm white LED. J. Alloys Compd. 945, 168916 (2023). https://doi.org/10.1016/j.jallcom.2023.168916

    Article  CAS  Google Scholar 

  28. I. Ullah, C.S. Sarumaha, A. Angnanon, I. Khan, M. Shoaib, S.A. Khattak, S. Kothan, N. Sangwaranatee, G. Rooh, J. Kaewkhao, Spectral features of Gd2O3 modified Sm3+ doped lithium strontium borate glasses for solid-state laser applications. Ceram. Int. 49, 13774–13782 (2023). https://doi.org/10.1016/j.ceramint.2022.12.255

    Article  CAS  Google Scholar 

  29. M.R. Chandana, B.R.R. Krushna, J. Malleshappa, K. Manjunatha, T.-E. Hsu, S.Y. Wu, S.C. Sharma, B.D. Prasad, B. Subramanian, H. Nagabhushana, Simple fabrication of novel Sm3 + doped BaGd2ZnO5 nanophosphors for flexible displays, improved data security applications, and solid-state lighting applications. Mater. Today Sustain. 22, 100397 (2023). https://doi.org/10.1016/j.mtsust.2023.100397

    Article  Google Scholar 

  30. S.G.M. Mushtaque, A.R. Kadam, S.J. Dhoble, High color purity and color tunability in Sm3+/Eu3 + activated/co-activated Sr6Ca4(PO4)6F2 phosphor for WLED and display devices application. J. Mol. Struct. 1274, 134510 (2023). https://doi.org/10.1016/j.molstruc.2022.134510

    Article  CAS  Google Scholar 

  31. J.Y. Chen, J.Q. Chen, L.J. Li, W.N. Zhang, L.P. Chen, H. Guo, A four-mode high-sensitive optical thermometer based on Ca3LiZnV3O12:Sm3+ phosphors. Mater. Today Chem. 29, 101409 (2023). https://doi.org/10.1016/j.mtchem.2023.101409

    Article  CAS  Google Scholar 

  32. S. Sailaja, C. Nageswara Raju, C. Adinarayana Reddy, B. Deva Prasad Raju, Y.-D. Jho, B. Sudhakar Reddy, Optical properties of Sm3+-doped cadmium bismuth borate glasses. J. Mol. Struct. 1038, 29–34 (2013). https://doi.org/10.1016/j.molstruc.2013.01.052

    Article  CAS  ADS  Google Scholar 

  33. S.N.F. Zalamin, M.H.M. Zaid, K.A. Matori, M.K.A. Karim, Y. Yaakob, W.M. Cheong, Z.W. Loh, M.I. Sayyed, Role of Sm3 + ions as network-modifying on elastic, mechanical, and radiation shielding properties of MgO–B2O3–TeO2 glasses. Prog Nucl. Energy. 161, 104752 (2023). https://doi.org/10.1016/j.pnucene.2023.104752

    Article  CAS  Google Scholar 

  34. A. Novatski, A. Somer, A. Gonçalves, R.L.S. Piazzetta, J.V. Gunha, A.V.C. Andrade, E.K. Lenzi, A.N. Medina, N.G.C. Astrath, R. El-Mallawany, Thermal and optical properties of lithium-zinc-tellurite glasses. Mater. Chem. Phys. 231, 150–158 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.078

    Article  CAS  Google Scholar 

  35. D.T. Dias, A. Gonçalves, A. Somer, V.S. Zanuto, R.A. dos Santos, J.V. Gunha, N.G.C. Astrath, A. Novatski, Raman gain coefficient of Er3 + doped TeO2–Li2O–ZnO glasses. J. Mater. Sci. Mater. Electron. 30, 16917–16921 (2019). https://doi.org/10.1007/s10854-019-01633-1

    Article  CAS  Google Scholar 

  36. S.V. Sagar, S. Babu, K.V. Rao, Emission spectroscopy of ­ Sm3 + ion-activated zinc phosphate glass for reddish–orange lighting applications. J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-11608-y

    Article  Google Scholar 

  37. J.V. Gunha, T. de Sales, R.F. Muniz, W. Ferreira, G.C. Astrath, A. Novatski, Spectroscopic studies of TeO2-based glasses doped with Sm3+ ions and its use as an optical temperature sensor, Preprint. (2024)

  38. L. Bolundut, E. Culea, G. Borodi, R. Stefan, C. Munteanu, P. Pascuta, Influence of Sm3+:Ag codoping on structural and spectroscopic properties of lead tellurite glass ceramics. Ceram. Int. 41, 2931–2939 (2015). https://doi.org/10.1016/j.ceramint.2014.10.119

    Article  CAS  Google Scholar 

  39. M. Sq, A. Mm, R.M.D. Sahar, A. Kf, Influence of Sm2O3 ion concentration on structural and thermal. J. Appl. Mech. Eng. (2016). https://doi.org/10.4172/2168-873.1000222

    Article  Google Scholar 

  40. B. Eraiah, Optical properties of samarium doped zinc–tellurite glasses. Bull. Mater. Sci. 29, 375–378 (2006). https://doi.org/10.1007/BF02704138

    Article  CAS  Google Scholar 

  41. R. Mondal, D. Biswas, A. Sundar, R.K.N. Ningthemcha, D. Deb, S. Bhattacharya, S. Kabi, Influence of samarium content on structural, thermal, linear and non-linear optical properties of ZnO–TeO2–P2O5 glasses. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.123561

    Article  Google Scholar 

  42. S.O. Baki, L.S. Tan, C.S. Kan, H.M. Kamari, A.S.M. Noor, M.A. Mahdi, Structural and optical properties of Er3+–Yb3 + codoped multicomposition. J. Non Cryst. Solids 362, 156–161 (2013). https://doi.org/10.1016/j.jnoncrysol.2012.11.042

    Article  CAS  ADS  Google Scholar 

  43. S.A. Bassam, K.A. Naseer, A.J. Prakash, K.A. Mahmoud, C.S. Suchandsangeeth, M.I. Sayyed, M.S. Alqahtani, E. El Sheikh, M. Uddin, Effect of Tm2O3 addition on the physical, structural, elastic, and radiation-resisting attributes of tellurite-based glasses. Radiat. Phys. Chem. 209, 110988 (2023). https://doi.org/10.1016/j.radphyschem.2023.110988

    Article  CAS  Google Scholar 

  44. N. Elkhoshkhany, S.Y. Marzouk, S. Shahin, Synthesis and optical properties of new fluoro-tellurite glass within (TeO2–ZnO–LiF–Nb2O5–NaF) system. J. Non Cryst. Solids 472, 39–45 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.07.012

    Article  CAS  ADS  Google Scholar 

  45. J. De Clermont-gallerande, S. Saito, M. Colas, P. Thomas, T. Hayakawa, New understanding of TeO2 e ZnO e Na2O ternary glass system. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.157072

    Article  Google Scholar 

  46. J.V. Gunha, R.F. Muniz, A. Somer, A. Gonçalves, R. Denkiewicz, G. De Souza, T.O. Sales, C. Jacinto, R. El-mallawany, A. Novatski, Characterization of oxyfluorotellurite glasses with TeO2–Li O–ZnO–LiF composition. Ceram. Int. 48, 4302–4311 (2022). https://doi.org/10.1016/j.ceramint.2021.10.224

    Article  CAS  Google Scholar 

  47. S. Gafar, S. Krishna, K. Hamzah, S. Aishah, Tailored spectroscopic characteristics of sm 3+ -imbued zinc-sodium tellurite glasses: influence of Dy3 + co-doping. Opt. Mater. (Amst). 139, 113774 (2023). https://doi.org/10.1016/j.optmat.2023.113774

    Article  CAS  Google Scholar 

  48. S.Q. Mawlud, M.M. Ameen, M.R. Sahar, N.M. Yusof, K.F. Ahmed, Y.A. Tanko, Absorption and luminescence spectral properties study of Sm3+ doped TeO2–Na2O glasses, Proceedings of 4th International Science Postgraduate Conference 2016. (2016)

  49. T. Sekiya, N. Mochida, A. Ohtsuka, M. Tonokawa, Raman spectra of MO1/2–TeO2 (M = Li, na, K, Rb, Cs and Tl) glasses. J. Non Cryst. Solids. 144, 128–144 (1992). https://doi.org/10.1016/S0022-3093(05)80393-X

    Article  CAS  ADS  Google Scholar 

  50. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J. Univ. Chem. Technol. Metall. 45, 219–250 (2010). https://doi.org/10.1016/j.jnoncrysol.2009.11.014

    Article  CAS  Google Scholar 

  51. N. Alfryyan, Z.A. Alrowaili, R.F. Muniz, E. Zainab Mufarreh, J.V. Gunha, A. Novatski, J.L. Gomes Junior, F.C. Serbena, I.O. Olarinoye, M.S. Al-Buriahi, Design synthesis and characterization of Pb-free tellurite glasses for radiation shielding applications. Radiat. Phys. Chem. (2023). https://doi.org/10.1016/j.radphyschem.2023.110969

    Article  Google Scholar 

  52. U.P.M. Serdang, H.A. Sidek, S. Rosmawati, Z.A. Talib, M. Halimah, W.M. Daud, Synthesis and optical properties of ZnO–TeO2 glass system. J. Appl. Sci. 6, 1489–1494 (2009)

    Google Scholar 

  53. R. El-Mallawany, The optical properties of tellurite glasses. J. Appl. Phys. 72, 1774–1777 (1992). https://doi.org/10.1063/1.351649

    Article  CAS  ADS  Google Scholar 

  54. S.K. Ahmmad, M.A. Samee, A. Edukondalu, S. Rahman, Physical and optical properties of zinc arsenic tellurite glasses. Results Phys. 2, 175–181 (2012). https://doi.org/10.1016/j.rinp.2012.10.002

    Article  CAS  ADS  Google Scholar 

  55. I. Jlassi, H. Elhouichet, M. Ferid, Thermal and optical properties of tellurite glasses doped erbium. J. Mater. Sci. (2011). https://doi.org/10.1007/s10853-010-4820-x

    Article  Google Scholar 

  56. B. Eraiah, Optical properties of lead-tellurite glasses doped with samarium trioxide. Bull. Mater. Sci. 33, 391–394 (2010). https://doi.org/10.1007/s12034-010-0059-z

    Article  CAS  Google Scholar 

  57. J. Fellman, T. Westerlund, Determination of the complex indices of refraction of glasses using Kramers–Krönig transformation. J. Non Cryst. Solids 146, 165–174 (1992). https://doi.org/10.1016/S0022-3093(05)80489-2

    Article  CAS  ADS  Google Scholar 

  58. C. Rivero, K. Richardson, R. Stegeman, G. Stegeman, T. Cardinal, E. Fargin, M. Couzi, V. Rodriguez, Quantifying Raman gain coefficients in tellurite glasses. J. Non Cryst. Solids. 346, 396–401 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.051

    Article  CAS  ADS  Google Scholar 

  59. R. Jose, G. Qin, Y. Arai, Y. Ohishi, Tailoring of Raman gain bandwidth of tellurite glasses for designing gain-flattened fiber Raman amplifiers. J. Opt. Sco Am. B 25, 373–382 (2008). https://doi.org/10.1364/JOSAB.25.000373

    Article  CAS  ADS  Google Scholar 

  60. E.S. Yousef, H.H. Hegazy, S. Almojadah, M. Reben, Absorption spectra and Raman gain coef fi cient in near-IR region of Er3 + ions doped TeO2–Nb2O5–Bi2O3–ZnO glasses. Opt. Laser Technol. 74, 138–144 (2015). https://doi.org/10.1016/j.optlastec.2015.06.002

    Article  CAS  ADS  Google Scholar 

  61. Y.A.N.Z. Hang, Y.X.U. Insheng, C.H.Y. Ou, D.X.U. Ong, J.U.T. Ang, P.E.Z. Hang, S.H.D. Ai, Raman gain and femtosecond laser induced damage of Ge–As–S chalcogenide glasses. Opt. Express 25, 8886–8895 (2017). https://doi.org/10.1364/OE.25.008886

    Article  ADS  Google Scholar 

  62. R.H. Stolen, C. Lee, Development of the stimulated Raman spectrum in single-mode silica fibers. J. Opt. Sco Am. B 1, 652–657 (1984). https://doi.org/10.1364/JOSAB.1.000652

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the support provide by Brazilian agencies CAPES, CNPq, Fundação Araucária, FINEP and FAPEAL. Special thanks to C-LABMU/UEPG and LAPTO-UTFPR/PG for their invaluable technical assistance.

Funding

This work was supported by  Fundação Araucária,  Conselho Nacional de Desenvolvimento Científico e Tecnológico,  Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Contributions

JVG: data curation, methodology, validation, investigation, writing—original draft. RFM: writing—review and editing, supervision. AS: conceptualization, writing—original draft. TdeOS: methodology, investigation, data curation. WfdaS: conceptualization, investigation, writing—review and editing. DTD: methodology, investigation, data curation. RE-M: writing—review and editing. CJdaS: methodology, investigation, data curation NGCA: writing—review and editing. AN: conceptualization, investigation, resources, writing—original draft, funding acquisition, supervision. All authors provided critical feedback and helped shape the research, analysis and manuscript

Corresponding author

Correspondence to Jaqueline Valeski Gunha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 783.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunha, J.V., Muniz, R.F., Somer, A. et al. Influence of Sm2O3 ion concentration on physical and thermal properties, and Raman gain coefficient of TeO2–Li2O–ZnO vitreous system. J Mater Sci: Mater Electron 35, 240 (2024). https://doi.org/10.1007/s10854-023-11895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11895-5

Navigation