Skip to main content
Log in

Influence of Fe substitution on the Eu-doped lithium borosilicate glass system's physical, thermal, magnetic, and luminescent properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The quenching melt process was used to create transparent glass samples of the Fe and Eu-co-doped lithium borosilicate glasses. The structure of the glass sample affects the molar volume, optical band gap, and thermal characteristics (glass transitions, softening, and melting temperatures). According to Mössbauer spectroscopy, the Fe2+/(Fe2+  + Fe3+) ratio remains between 0.1 and 0.13, and the valence state of iron ions is not significantly altered with Eu2O3 presence. With increasing Eu2O3 content, magnetic susceptibility was shown to decrease. Energy levels determined by UV/Vis and NIR spectroscopy, located at 362, 380, 395, 414, 465, 533, 583, 590, 2092, and 2202 nm were assigned to 7F0 → 5D4, 7F0 → 5G2, 7F0 → 5L6, 7F0 → 5D3, 7F0 → 5D2, 7F0 → 5D1, and 7F0 → 5D0 electronic transitions, respectively. Five transition band emission spectra were identified using an excitation wavelength of 395 nm. It was observed that by increasing Fe3+, the intensity of the emission peak decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. H. Wen, P.A. Tanner, Optical properties of 3d transition metal ion-doped sodium borosilicate glass. J. Alloys Compd. 625, 328–335 (2015). https://doi.org/10.1016/j.jallcom.2014.11.094

    Article  CAS  Google Scholar 

  2. A.A. Ali, H.M. Shaaban, A. Abdallah, Spectroscopic studies of ZnO borate-tellurite glass doped with Eu2O3. J. Mater. Res. Technol. 7(3), 240–247 (2018). https://doi.org/10.1016/j.jmrt.2017.06.008

    Article  CAS  Google Scholar 

  3. P.S. Wong, M.H. Wan, R. Hussin, H.O. Lintang, S. Endud, Structural and luminescence studies of europium ions in lithium aluminium borophosphate glasses. J. Rare Earths 32(7), 585–592 (2014). https://doi.org/10.1016/S1002-0721(14)60112-5

    Article  CAS  Google Scholar 

  4. C.R. Kesavulu et al., Optical spectroscopy and emission properties of Ho3+-doped gadolinium calcium silicoborate glasses for visible luminescent device applications. J. Non-Cryst. Solids 474, 50–57 (2017)

    Article  ADS  CAS  Google Scholar 

  5. B.N.K. Reddy, B.D. Raju, K. Thyagarajan, R. Ramanaiah, Y.-D. Jho, B.S. Reddy, Optical characterization of Eu3+ ion doped alkali oxide modified borosilicate glasses for red laser and display device applications. Ceram. Int. 43(12), 8886–8892 (2017)

    Article  CAS  Google Scholar 

  6. C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, E. Kaewnuam, N. Wantana, Luminescence properties and energy transfer from Gd3+ to Tb3+ ions in gadolinium calcium silicoborate glasses for green laser application. J. Alloys Compd. 704, 557–564 (2017)

    Article  CAS  Google Scholar 

  7. D.D. Ramteke, H.C. Swart, R.S. Gedam, Electrochemical response of Nd3+ ions containing lithium borate glasses. J. Rare Earths 35(5), 480–484 (2017)

    Article  CAS  Google Scholar 

  8. C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, N. Chanthima, Y. Tariwong, Physical, vibrational, optical and luminescence investigations of Dy3+-doped yttrium calcium silicoborate glasses for cool white LED applications. J. Alloys Compd. 726, 1062–1071 (2017)

    Article  CAS  Google Scholar 

  9. P. Aryal et al., Optical and luminescence characteristics of Eu3+-doped B2O3:SiO2:Y2O3:CaO glasses for visible red laser and scintillation material applications. J. Rare Earths 36(5), 482–491 (2018). https://doi.org/10.1016/j.jre.2017.09.017

    Article  CAS  Google Scholar 

  10. J. Liu et al., Non-alkali glass substrate with improved mechanical properties for display devices. J. Non-Cryst. Solids 524, 119610 (2019)

    Article  CAS  Google Scholar 

  11. Y. Du, J. Yuan, S. Han, S. Yan, Y. Wang, D. Chen, Luminescence and scintillation properties of CuO-doped SiO2–B2O3–La2O3 glass. Opt. Mater. (Amst.) 96, 109363 (2019)

    Article  CAS  Google Scholar 

  12. Z. Wang, W. Ni, Y. Jia, L. Zhu, X. Huang, Crystallization behavior of glass ceramics prepared from the mixture of nickel slag, blast furnace slag and quartz sand. J. Non-Cryst. Solids 356(31–32), 1554–1558 (2010)

    Article  ADS  CAS  Google Scholar 

  13. X. Ren, W. Zhang, Y. Zhang, P. Zhang, J. Liu, Effects of Fe2O3 content on microstructure and mechanical properties of CaO–Al2O3–SiO2 system. Trans. Nonferr. Met. Soc. China 25(1), 137–145 (2015)

    Article  CAS  Google Scholar 

  14. B.O. Mysen, Redox equilibria and coordination of Fe2+ and Fe3+ in silicate glasses from 57Fe Mossbauer spectroscopy. J. Non-Cryst. Solids 95, 247–254 (1987)

    Article  ADS  Google Scholar 

  15. Q. Yu, C. Yan, D. Yong, Y. Feng, D. Liu, Y. Bin, Effect of Fe2O3 on non-isothermal crystallization of CaO–MgO–Al2O3–SiO2 glass. Trans. Nonferr. Met. Soc. China 25(7), 2279–2284 (2015)

    Article  CAS  Google Scholar 

  16. P.M.V. Teja, A.R. Babu, P.S. Rao, R. Vijay, D.K. Rao, Structural changes in the ZnF2–Bi2O3–GeO2 glass system doped with Fe2O3 by spectroscopic and dielectric investigations. J. Phys. Chem. Solids 74(7), 963–970 (2013)

    Article  ADS  Google Scholar 

  17. P.R. Rao, L. Pavić, A. Moguš-Milanković, V.R. Kumar, I.V. Kityk, N. Veeraiah, Electrical and spectroscopic properties of Fe2O3 doped Na2SO4–BaO–P2O5 glass system. J. Non-Cryst. Solids 358(23), 3255–3267 (2012)

    Article  ADS  CAS  Google Scholar 

  18. M.T. Nayak, J.A.E. Desa, P.D. Babu, Magnetic and spectroscopic studies of an iron lithium calcium silicate glass and ceramic. J. Non-Cryst. Solids 484(December 2017), 1–7 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.12.050

    Article  ADS  CAS  Google Scholar 

  19. A. Bhogi, P. Kistaiah, Spectroscopic properties of alkali alkaline earth borate glasses doped with Fe3+ ions. J. Aust. Ceram. Soc. 56(1), 127–138 (2020)

    Article  CAS  Google Scholar 

  20. H.D. Shashikala, N.K. Udayashankar et al., Influence of Fe3+ ions on optical, structural, thermal and mechanical properties of Li2O–Na2O–K2O–ZnO–B2O3 based glass system. Ceram. Int. 46(4), 5213–5222 (2020)

    Article  Google Scholar 

  21. X. He et al., Glass forming ability, structure and properties of Cr2O3–Fe2O3 co-doped MgO–Al2O3–SiO2–B2O3 glasses and glass-ceramics. J. Non-Cryst. Solids 529(September 2019), 2–9 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119779

    Article  CAS  Google Scholar 

  22. S.P. Singh, R.P.S. Chakradhar, J.L. Rao, B. Karmakar, EPR, FTIR, optical absorption and photoluminescence studies of Fe2O3 and CeO2 doped ZnO–Bi2O3–B2O3 glasses. J. Alloys Compd. 493(1–2), 256–262 (2010)

    Article  CAS  Google Scholar 

  23. I. Bulus, M. Isah, M.E. Garba, R. Hussin, S.A. Dalhatu, Influence of Eu3+ dopant on physical and optical properties of lithium-borosulfophosphate glasses. Niger. J. Technol. Dev. 15(4), 121 (2019). https://doi.org/10.4314/njtd.v15i4.3

    Article  Google Scholar 

  24. S. Dalal et al., Effect of substituting iron on structural, thermal and dielectric properties of lithium borate glasses. Mater. Res. Bull. 70, 559–566 (2015)

    Article  CAS  Google Scholar 

  25. R. Naik, S.C. Prashantha, H. Nagabhushana, K.M. Girish, Electrochemical, photoluminescence and EPR studies of Fe3+ doped nano Forsterite: effect of doping on tetra and octahedral sites. J. Lumin. 197(December 2017), 233–241 (2018). https://doi.org/10.1016/j.jlumin.2018.01.051

    Article  CAS  Google Scholar 

  26. N. Wantana, E. Kaewnuam, N. Chanlek, H.J. Kim, J. Kaewkhao, Influence of Gd3+ on structural and luminescence properties of new Eu3+-doped borate glass for photonics material. Radiat. Phys. Chem. 207, 110812 (2023)

    Article  CAS  Google Scholar 

  27. S. Kaewjaeng et al., Effect of Gd2O3 on the radiation shielding, physical, optical and luminescence behaviors of Gd2O3–La2O3–ZnO–B2O3–Dy2O3 glasses. Radiat. Phys. Chem. 185, 109500 (2021)

    Article  CAS  Google Scholar 

  28. W. Rittisut et al., New developments in the Gd3+/Sm3+ ions doped lithium aluminum borate glasses of luminescent materials for lighting applications. Radiat. Phys. Chem. 201, 110443 (2022)

    Article  CAS  Google Scholar 

  29. Y. Zhang et al., Tunable emission from green to red in the GdSr2AlO5:Tb3+, Eu3+ phosphor via efficient energy transfer. RSC Adv. 8(7), 3530–3535 (2018)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. Vijayakumar, K. Maheshvaran, V. Sudarsan, K. Marimuthu, Concentration dependent luminescence studies on Eu3+ doped telluro fluoroborate glasses. J. Lumin. 154, 160–167 (2014). https://doi.org/10.1016/j.jlumin.2014.04.022

    Article  CAS  Google Scholar 

  31. J. Rajagukguk, J. Kaewkhao, M. Djamal, R. Hidayat, Suprijadi, Y. Ruangtaweep, Structural and optical characteristics of Eu3+ ions in sodium–lead–zinc–lithium-borate glass system, J. Mol. Struct. 1121, 180–187 (2016). https://doi.org/10.1016/j.molstruc.2016.05.048

  32. M.S. Gaafar, F.H. El-Batal, M. El-Gazery, S.A. Mansour, Effect of doping by different transition metals on the acoustical properties of alkali borate glasses. Acta Phys. Pol. A 115(3), 671–678 (2009). https://doi.org/10.12693/APhysPolA.115.671

    Article  ADS  CAS  Google Scholar 

  33. T. Togashi, T. Honma, K. Shinozaki, T. Komatsu, Electrochemical performance as cathode of lithium iron silicate, borate and phosphate glasses with different Fe2+ fractions. J. Non-Cryst. Solids 436, 51–57 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.02.001

    Article  ADS  CAS  Google Scholar 

  34. E.A. Elkelany, M.A. Hassan, A. Samir, A.M. Abdel-Ghany, H.H. El-Bahnasawy, M. Farouk, Optical and Mössbauer spectroscopy of lithium tetraborate glass doped with iron oxide. Opt. Mater. (Amst.) (2021). https://doi.org/10.1016/j.optmat.2020.110744

    Article  Google Scholar 

  35. Z.A. Alrowaili et al., The impact of Fe2O3 on the dispersion parameters and gamma/fast neutron shielding characteristics of lithium borosilicate glasses. Optik (Stuttg.) 249(September 2021), 168259 (2022). https://doi.org/10.1016/j.ijleo.2021.168259

    Article  ADS  CAS  Google Scholar 

  36. M.K. Halimah et al., Optical properties of lithium borate glass (Li2O)x(B2O3)1–x (Sifat Optik Kaca Litium Borat (Li2O)x(B2O3)1–x). Sains Malay. 43(6), 899–902 (2014)

    CAS  Google Scholar 

  37. P.P. Pawar, S.R. Munishwar, R.S. Gedam, Eu2O3 doped bright orange–red luminescent lithium alumino-borate glasses for solid state lighting. J. Lumin. 200(October 2017), 216–224 (2018). https://doi.org/10.1016/j.jlumin.2018.04.026

    Article  CAS  Google Scholar 

  38. T. Liu et al., Effect of Fe2O3 doping on structure, physical–mechanical properties and luminescence performance of magnesium–aluminum–silicon based glass-ceramics. Ceram. Int. 46(18), 28851–28859 (2020). https://doi.org/10.1016/j.ceramint.2020.08.051

    Article  CAS  Google Scholar 

  39. S. Rakpanich, N. Wantana, Y. Ruangtaweep, J. Kaewkhao, Eu3+ doped borosilicate glass for solid-state luminescence material. J. Met. Mater. Miner. 27(1), 35–38 (2017). https://doi.org/10.14456/jmmm.2017.5

    Article  CAS  Google Scholar 

  40. F. Gharghar, S. El-Jadal, The influence of iron oxide on the structural and optical properties of borosilicate. J. Appl. Sci. 9, 33–46 (2022)

    Google Scholar 

  41. Hirdesh, A. Khanna, Structural, thermal and photoluminescent properties of Eu2O3–Li2O–TeO⁠2 glasses, J. Lumin. 204(August), 319–326 (2018). https://doi.org/10.1016/j.jlumin.2018.08.022

  42. S. Singh, G. Kalia, K. Singh, Effect of intermediate oxide (Y2O3) on thermal, structural and optical properties of lithium borosilicate glasses. J. Mol. Struct. 1086, 239–245 (2015). https://doi.org/10.1016/j.molstruc.2015.01.031

    Article  ADS  CAS  Google Scholar 

  43. Z. Luo, C. Qin, Y. Wu, W. Xu, S. Zhang, A. Lu, Structure and properties of Fe2O3-doped 50Li2O–10B2O3–40P2O5 glass and glass–ceramic electrolytes. Solid State Ion. 345(June 2019), 115177 (2020). https://doi.org/10.1016/j.ssi.2019.115177

    Article  CAS  Google Scholar 

  44. P.P. Pawar, S.R. Munishwar, S. Gautam, R.S. Gedam, Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED. J. Lumin. 183, 79–88 (2017). https://doi.org/10.1016/j.jlumin.2016.11.027

    Article  CAS  Google Scholar 

  45. C.L. Justino de Lima, F.A. Veer, H. Zhang, F. França de Mendonça Filho, O. Copuroglu, R. Nijsse, “Thermal, optical and mechanical properties of new glass compositions containing fly ash”, Glass Technol. Eur. J. Glass Sci. Technol. A 62(3), 96–108 (2021). https://doi.org/10.13036/17533546.62.3.007

    Article  Google Scholar 

  46. E. Bykova et al., High-pressure behavior of Fe2O3. Acta Crystallogr. A 70(a1), C49 (2014). https://doi.org/10.1107/s2053273314099501

    Article  Google Scholar 

  47. S.M. Salman, S.N. Salama, E.A. Mahdy, The crystallization process and chemical durability of glass–ceramics based on the Li2O–B2O3 (Fe2O3)–SiO2 (GeO2) system. Ceram. Int. 39(6), 7185–7192 (2013). https://doi.org/10.1016/j.ceramint.2013.02.063

    Article  CAS  Google Scholar 

  48. Y. Xu et al., Impacts of substitution of Fe2O3 for SiO2 on structure and properties of borosilicate glasses containing MoO3. J. Non-Cryst. Solids 599(July 2022), 121982 (2023). https://doi.org/10.1016/j.jnoncrysol.2022.121982

    Article  CAS  Google Scholar 

  49. M. Środa, S. Świontek, W. Gieszczyk, P. Bilski, The effect of lithium fluoride on the thermal stability and thermoluminescence properties of borosilicate glass and glass–ceramics. J. Eur. Ceram. Soc. 40(2), 472–479 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.09.037

    Article  CAS  Google Scholar 

  50. M. Malik, S. Dagar, A. Hooda, A. Agarwal, S. Khasa, Effect of magnetic ion, Fe3+ on the structural and dielectric properties of oxychloro bismuth borate glasses. Solid State Sci. (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106491

    Article  Google Scholar 

  51. V.P. Manjari, C. Rama, C. Venkata, S. Muntaz, Y.P. Reddy, R.V.S.S.N. Ravikumar, Synthesis and characterization of undoped and Fe(III) ions doped NaCaAlPO4F3 phosphor. J. Lumin. 145, 324–329 (2014). https://doi.org/10.1016/j.jlumin.2013.07.052

    Article  CAS  Google Scholar 

  52. M.M. Mohan, L.R. Moorthy, D. Ramachari, C.K. Jayasankar, Spectroscopic investigation and optical characterization of Eu3+ ions in K-Nb–Si glasses. Spectrochim. Acta A 118, 966–971 (2014). https://doi.org/10.1016/j.saa.2013.09.094

    Article  ADS  CAS  Google Scholar 

  53. S.A. Loureno et al., Eu3+ photoluminescence enhancement due to thermal energy transfer in Eu2O3-doped SiO2B2O 3PbO2 glasses system. J. Lumin. 131(5), 850–855 (2011). https://doi.org/10.1016/j.jlumin.2010.11.028

    Article  CAS  Google Scholar 

  54. M. Secu, C.E. Secu, Processing and optical properties of Eu-doped chloroborate glass–ceramic. Crystals 10(12), 1–12 (2020). https://doi.org/10.3390/cryst10121101

    Article  CAS  Google Scholar 

  55. P. Ramesh et al., Compositional dependence of red photoluminescence of Eu3+ ions in lead and bismuth containing borate glasses. Solid State Sci. 107(July), 106360 (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106360

    Article  CAS  Google Scholar 

  56. N.A.S. Omar, Y.W. Fen, K.A. Matori, M.H.M. Zaid, N.F. Samsudin, Structural and optical properties of Eu3+ activated low cost zinc soda lime silica glasses. Results Phys. 6(September), 640–644 (2016). https://doi.org/10.1016/j.rinp.2016.09.007

    Article  ADS  Google Scholar 

  57. Q. Huang, T. Liu, X. Shen, X. Li, A. Lu, Y. Gu, Characterization of Fe2O3 doping on structure, optical and luminescence properties of magnesium aluminosilicate-based glasses. J. Non-Cryst. Solids (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120786

    Article  Google Scholar 

  58. K.S. Shaaban, B.M. Alotaibi, N. Alharbiy, A.F.A. El-Rehim, Fabrication of lithium borosilicate glasses containing Fe2O3 and ZnO for FT-IR, UV–Vis–NIR, DTA, and highly efficient shield. Appl. Phys. A (2022). https://doi.org/10.1007/s00339-022-05474-4

    Article  Google Scholar 

  59. M. Al Mahalawy, H. Farouk, A. Ratep, I. Kashif, Impact of bismuth concentration on the fluorescence properties of the bismuth borosilicate glasses. Opt. Quantum Electron. 53(7), 1–22 (2021). https://doi.org/10.1007/s11082-021-02966-0

    Article  CAS  Google Scholar 

  60. M. Romero-Ferez, J.M. Rincón, C.J.R. González Oliver, C. D’Ovidio, D. Esparza, Magnetic properties of glasses with high iron oxide content. Mater. Res. Bull. 36(7–8), 1513–1520 (2001). https://doi.org/10.1016/S0025-5408(01)00630-4

    Article  Google Scholar 

  61. M.D. Dyar, A review of Mössbauer data on inorganic glasses: the effects of composition on iron valency and coordination. Am. Mineral. 70(3–4), 304–316 (1985)

    CAS  Google Scholar 

  62. L. Skuja, Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids 239, 16–48 (1998). https://doi.org/10.1016/S0022-3093(98)00720-0

    Article  ADS  CAS  Google Scholar 

  63. D. Ehrt, Photoluminescence in glass and glass ceramics photoluminescence in glasses and glass ceramics. IOP Conf. Ser. Mater. Sci. Eng. 2, 012001 (2009). https://doi.org/10.1088/1757-899X/2/1/012001

    Article  CAS  Google Scholar 

  64. X. Guo, Q. Pan, X. Song, Q. Guo, S. Zhou, J. Qiu, G. Dong, Embedding carbon dots in Eu3+-doped metal–organic framework for label-free ratiometric fluorescence detection of Fe3+ ions. J. Am. Ceram. Soc. 104, 886–895 (2021). https://doi.org/10.1111/jace.17477

    Article  CAS  Google Scholar 

  65. Y. Zheng, X. Wang, Z. Guan, J. Deng, X. Liu, H. Li, P. Zhao, Application of CD and Eu3+ dual emission MOF colorimetric fluorescent probe based on neural network in Fe3+ detection. Part. Part. Syst. Charact. (2022). https://doi.org/10.1002/ppsc.202200124

    Article  Google Scholar 

  66. P. Li, X. Chen, C. Guo, H. Zou, Z. Chen, B. Liu, A logic fluorescent chemosensor based on Eu3+ functionalized Cd-MOFs for sensing Fe3+ and Cu2+ synchronously. Eur. J. Inorg. Chem. 26(3), e202200576 (2023). https://doi.org/10.1002/ejic.202200576

    Article  CAS  Google Scholar 

  67. M. Murali Mohan, L. Rama Moorthy, D. Ramachari, C.K. Jayasankar, Spectroscopic investigation and optical characterization of Eu3+ ions in K-Nb–Si glasses. Spectrochim. Acta A 118, 966–971 (2014). https://doi.org/10.1016/j.saa.2013.09.094

    Article  ADS  CAS  Google Scholar 

  68. N. Kiran, Eu3+ ion doped sodium–lead borophosphate glasses for red light emission. J. Mol. Struct. 1065, 93–98 (2014). https://doi.org/10.1016/j.molstruc.2014.02.047

    Article  ADS  CAS  Google Scholar 

  69. E.M. Ahmed, E.A. Gaml, Effect of Pb/B ion replacement in B2O3·PbO·Fe2O3·Na2O glasses: optical, magnetic, and fluorescence properties. Opt. Mater. (Amst.) 116(April), 111075 (2021). https://doi.org/10.1016/j.optmat.2021.111075

    Article  CAS  Google Scholar 

  70. Q. Cai, F. Zhou, N. Yang, H. Xu, S. Baccaro, A. Cemmi, M. Falconieri, G. Chen, Enhanced and shortened Mn2+ emissions by Cu+ co-doping in borosilicate glasses for W-LEDs. Opt. Mater. Express 5(1), 51 (2015). https://doi.org/10.1364/ome.5.000051

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.A.T. and M.L.M are staff members of CONICET (Argentina). Asmaa Ratep acknowledges TWAS Fellowship for partial financial support. And the authors thank Material Science and Glass Research Lab., Physics Department, Faculty of Science, AL-AZHAR University for providing the measurement facilities.

Funding

No funding for research.

Author information

Authors and Affiliations

Authors

Contributions

AR: Investigation, Writing—original draft, Methodology, Formal analysis. MLM: Investigation, Writing—original draft, Methodology, Formal analysis. MAT: Writing—review and editing, administration, Formal analysis, Investigation. IK: Writing—review and editing, Administration, Formal analysis, Investigation.

Corresponding author

Correspondence to I. Kashif.

Ethics declarations

Conflict of interest

No conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This paper meets the ethical standards of this journal.

Informed consent

All authors agree with the review of this paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashif, I., Montes, M.L., Taylor, M.A. et al. Influence of Fe substitution on the Eu-doped lithium borosilicate glass system's physical, thermal, magnetic, and luminescent properties. J Mater Sci: Mater Electron 35, 273 (2024). https://doi.org/10.1007/s10854-023-11894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11894-6

Navigation