Skip to main content
Log in

Preparation of NiCo2S4/carbon hollow sphere for long cycle lithium sulfur batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Uniformly distributed NiCo2S4 nanoparticles on hollow carbon spheres were prepared by carbonisation and in-situ vulcanisation methods as a positive electrode host for lithium–sulphur batteries. Among them, carbon hollow spheres can provide a huge internal cavity, which prevents volume expansion during the charge and discharge process. At the same time, the physically limit the dissolution of polysulfides in the electrolyte and can also provide high conductivity. The NiCo2S4 nanoparticles on the surface can establish a specific polar environment for charge and discharge and can interact with polysulfides to mitigate the loss of active materials through chemical adsorption. Under the synergistic effect of NiCo2S4 and carbon hollow spheres, the electrode with a special structure of NiCo2S4/carbon hollow spheres as sulfur host exhibits excellent long cycle performance. At a current density of 335 mA g−1, it still has a high discharge specific capacity of 526 mAh g−1 after 500 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2016). https://doi.org/10.1038/nmat4834

    Article  CAS  Google Scholar 

  2. M.V. Reddy, A. Mauger, C.M. Julien, A. Paolella, K. Zaghib, Brief history of early Lithium-battery development. Mater. (Basel). 13(8), 1884–1892 (2020). https://doi.org/10.3390/ma13081884

    Article  CAS  Google Scholar 

  3. J.B. Goodenough, Y. Kim, C.R. Li, Batteries†, Chem. Mater. 22(3), 587–603 (2009). https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  4. R. Fang, S. Zhao, S. Pei, X. Qian, P.X. Hou, H.M. Cheng, C. Liu, F. Li, Toward more reliable lithium–sulfur batteries: an all-graphene cathode structure. ACS Nano 10(9), 8676–8682 (2016). https://doi.org/10.1021/acsnano.6b04019

    Article  CAS  Google Scholar 

  5. Y. Zhao, Y. Ye, F. Wu, Y. Li, L. Li, R. Chen, Anode interface engineering and architecture design for high-performance lithium–sulfur batteries. Adv. Mater. 31(12), 1806532–1806559 (2019). https://doi.org/10.1002/adma.201806532

    Article  CAS  Google Scholar 

  6. B. Zhang, X. Qin, G.R. Li, X.P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 3(10), 1531–1537 (2010). https://doi.org/10.1039/c002639e

    Article  CAS  Google Scholar 

  7. M. Li, J. Lu, K. Amine, Nanotechnology for Sulfur cathodes. ACS Nano. 15(5), 8087–8094 (2021). https://doi.org/10.1021/acsnano.1c01999

    Article  CAS  Google Scholar 

  8. R. Kumar, J. Liu, J.-Y. Hwang, Y.-K. Sun, Recent research trends in Li–S batteries. J. Mater. Chem. A 6(25), 11582–11605 (2018). https://doi.org/10.1039/c8ta01483c

    Article  CAS  Google Scholar 

  9. P. Xie, Y. Peng, X. Liu, Y. Yin, Y. Li, Z. Wu, Free-standing MrGO/S film with suppressive shuttle effect for high-performance flexible lithium–sulfur batteries. Energy & Fuels 35(23), 19827–19834 (2021). https://doi.org/10.1021/acs.energyfuels.1c03250

    Article  CAS  Google Scholar 

  10. J. Lim, J. Pyun, K. Char, Recent approaches for the Direct Use of Elemental Sulfur in the synthesis and Processing of Advanced materials. Angew. Chem. Int. Ed. 54(11), 3249–3258 (2015). https://doi.org/10.1002/anie.201409468

    Article  CAS  Google Scholar 

  11. Y. Huang, X. Gao, X. Han, Z. Guang, X. Li, Controlled synthesis of three-dimensional porous carbon aerogel via catalysts: effects of morphologies toward the performance of lithium–sulfur batteries. Solid State Ion. (2020). https://doi.org/10.1016/j.ssi.2020.115248

    Article  Google Scholar 

  12. S. Jiang, M. Chen, X. Wang, Y. Zhang, C. Huang, Y. Zhang, Y. Wang, Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium–sulfur batteries. Chem. Eng. J. 355, 478–486 (2019). https://doi.org/10.1016/j.cej.2018.08.170

    Article  CAS  Google Scholar 

  13. D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I.R. Gentle, G.Q.M. Lu, Carbon–sulfur composites for Li–S batteries: status and prospects. J. Mater. Chem. A 1(33), 9382–9394 (2013). https://doi.org/10.1039/c3ta11045a

    Article  CAS  Google Scholar 

  14. H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J.-Q. Huang, Q. Zhang, Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries. Adv. Energy Mater. 9(1), 1802768–1802773 (2019). https://doi.org/10.1002/aenm.201802768

    Article  CAS  Google Scholar 

  15. J. Nelson, S. Misra, Y. Yang, A. Jackson, Y. Liu, H. Wang, H. Dai, J.C. Andrews, Y. Cui, M.F. Toney, Operando X-ray diffraction and transmission X-ray Microscopy of Lithium Sulfur batteries. J. Am. Chem. Soc. 134(14), 6337–6343 (2012). https://doi.org/10.1021/ja2121926

    Article  CAS  Google Scholar 

  16. D. Cheng, Y. Zhao, X. Tang, T. An, X. Wang, H. Zhou, D. Zhang, T. Fan, Densely integrated Co, N-Codoped graphene@carbon nanotube porous hybrids for high-performance lithium–sulfur batteries. Carbon 149, 750–759 (2019). https://doi.org/10.1016/j.carbon.2019.04.108

    Article  CAS  Google Scholar 

  17. R. Fang, S. Zhao, P. Hou, M. Cheng, S. Wang, H.M. Cheng, C. Liu, F. Li, 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv. Mater. 28(17), 3374–3382 (2016). https://doi.org/10.1002/adma.201506014

    Article  CAS  Google Scholar 

  18. S. Dörfler, M. Hagen, H. Althues, J. Tübke, S. Kaskel, M.J. Hoffmann, High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries. Chem. Commun. 48(34), 4097–4099 (2012). https://doi.org/10.1039/c2cc17925c

    Article  CAS  Google Scholar 

  19. L. Sun, D. Wang, Y. Luo, K. Wang, W. Kong, Y. Wu, L. Zhang, K. Jiang, Q. Li, Y. Zhang, J. Wang, S. Fan, Sulfur embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium–sulfur batteries. ACS Nano. 10(1), 1300–1308 (2015). https://doi.org/10.1021/acsnano.5b06675

    Article  CAS  Google Scholar 

  20. X. Gao, Y. Huang, X. Sun, S. Batool, T. Li, Nanopolyhedron Co–C/Cores triggered carbon nanotube in-situ growth inside carbon aerogel shells for fast and long-lasting lithium–sulfur batteries. J. Power Sources (2022). https://doi.org/10.1016/j.jpowsour.2021.230913

    Article  Google Scholar 

  21. S. Rehman, X. Gu, K. Khan, N. Mahmood, W. Yang, X. Huang, S. Guo, Y. Hou, 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium–sulfur batteries. Adv. Energy Mater. 6(12), 1502518 (2016). https://doi.org/10.1002/aenm.201502518

    Article  CAS  Google Scholar 

  22. X. Zhao, H.-J. Ahn, K.-W. Kim, K.-K. Cho, J.-H. Ahn, Polyaniline-coated Mesoporous Carbon/Sulfur composites for Advanced Lithium Sulfur batteries. J. Phys. Chem. C 119(15), 7996–8003 (2015). https://doi.org/10.1021/jp511846z

    Article  CAS  Google Scholar 

  23. L. Zhu, L. You, P. Zhu, X. Shen, L. Yang, K. Xiao, High performance lithium–sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator. ACS Sustain. Chem. Eng. 6(1), 248–257 (2018). https://doi.org/10.1021/acssuschemeng.7b02322

    Article  CAS  Google Scholar 

  24. X. Gao, Y. Huang, H. Gao, S. Batool, M. Lu, X. Li, Y. Zhang, Sulfur double encapsulated in a porous hollow carbon aerogel with interconnected micropores for advanced lithium–sulfur batteries. J. Alloys Compd. 834, 155190 (2020). https://doi.org/10.1016/j.jallcom.2020.155190

    Article  CAS  Google Scholar 

  25. M. Thripuranthaka, V. Chaturvedi, P.K. Dwivedi, A. Torris, M.V. Shelke, 3D x-ray microtomography investigations on the bimodal porosity and high sulfur impregnation in 3D carbon foam for Li–S battery application. J. Phy.: Energy (2022). https://doi.org/10.1088/2515-7655/ac4c34

    Article  Google Scholar 

  26. X. Zeng, J. Tu, S. Chen, S. Zeng, Q. Zhang, J. Zou, K. Li, Microwave-assisted synthesis of Cr3C2@C core shell structure anchored on hierarchical porous carbon foam for enhanced polysulfide adsorption in Li–S batteries. Nano Res. 14(7), 2345–2352 (2020). https://doi.org/10.1007/s12274-020-3233-7

    Article  CAS  Google Scholar 

  27. F. Wu, J. Chen, R. Chen, S. Wu, L. Li, S. Chen, T. Zhao, Sulfur/Polythiophene with a Core/Shell Structure: synthesis and Electrochemical properties of the Cathode for Rechargeable Lithium batteries. J. Phys. Chem. C 115(13), 6057–6063 (2011). https://doi.org/10.1021/jp1114724

    Article  CAS  Google Scholar 

  28. B. Oschmann, J. Park, C. Kim, K. Char, Y.-E. Sung, R. Zentel, Copolymerization of Polythiophene and Sulfur to improve the Electrochemical performance in Lithium–sulfur batteries. Chem. Mater. 27(20), 7011–7017 (2015). https://doi.org/10.1021/acs.chemmater.5b02317

    Article  CAS  Google Scholar 

  29. W. Li, Q. Zhang, G. Zheng, Z.W. Seh, H. Yao, Y. Cui, Understanding the role of different conductive polymers in improving the Nanostructured Sulfur Cathode performance. Nano Lett. 13(11), 5534–5540 (2013). https://doi.org/10.1021/nl403130h

    Article  CAS  Google Scholar 

  30. P. Geng, S. Cao, X. Guo, J. Ding, S. Zhang, M. Zheng, H. Pang, Polypyrrole coated hollow metal–organic framework composites for lithium–sulfur batteries. J. Mater. Chem. A 7(33), 19465–19470 (2019). https://doi.org/10.1039/c9ta05812e

    Article  CAS  Google Scholar 

  31. M. Yan, W. Dong, F. Liu, L. Chen, T. Hasan, Y. Li, B.-L. Su, Unprecedented strong and reversible atomic orbital hybridization enables highly stable Li–S battery. Natl. Sci. Rev. (2022). https://doi.org/10.1093/nsr/nwac078

    Article  Google Scholar 

  32. Y. Luo, R. Guo, T. Li, F. Li, Z. Liu, M. Zheng, B. Wang, Z. Yang, H. Luo, Y. Wan, Application of polyaniline for Li-Ion batteries, lithium–sulfur batteries, and supercapacitors. ChemSusChem 12(8), 1591–1611 (2019). https://doi.org/10.1002/cssc.201802186

    Article  CAS  Google Scholar 

  33. Y. Xie, L. Fang, H. Cheng, C. Hu, H. Zhao, J. Xu, J. Fang, X. Lu, J. Zhang, Biological cell derived N-doped hollow porous carbon microspheres for lithium–sulfur batteries. J. Mater. Chem. A 4(40), 15612–15620 (2016). https://doi.org/10.1039/c6ta06164h

    Article  CAS  Google Scholar 

  34. C. Zhang, H.B. Wu, C. Yuan, Z. Guo, Confining Sulfur in double-shelled Hollow Carbon spheres for Lithium–Sulfur batteries. Angew. Chem. Int. Ed. 51(38), 1–5 (2012). https://doi.org/10.1002/ange.201205292

    Article  Google Scholar 

  35. N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew. Chem. Int. Ed. 50(26), 5904–5908 (2011). https://doi.org/10.1002/anie.201100637

    Article  CAS  Google Scholar 

  36. Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.-C. Hsu, Y. Cui, Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4(1), 1–6 (2013). https://doi.org/10.1038/ncomms2327

    Article  CAS  Google Scholar 

  37. W. Dong, D. Wang, X. Li, Y. Yao, X. Zhao, Z. Wang, H.-E. Wang, Y. Li, L. Chen, D. Qian, B.-L. Su, Bronze TiO2 as a cathode host for lithium–sulfur batteries. J. Energy Chem. 48, 259–266 (2020). https://doi.org/10.1016/j.jechem.2020.01.022

    Article  Google Scholar 

  38. R. Tang, X. Li, Z. Ding, L. Zhang, An ultrafine V2O3 modified hierarchical porous carbon microsphere as a high performance cathode matrix for lithium–sulfur batteries. RSC Adv. 6(69), 65162–65170 (2016). https://doi.org/10.1039/c6ra12687a

    Article  CAS  Google Scholar 

  39. M. Zhu, S. Li, J. Liu, B. Li, Promoting polysulfide conversion by V2O3 hollow sphere for enhanced lithium–sulfur battery. Appl. Surf. Sci. 473, 1002–1008 (2019). https://doi.org/10.1016/j.apsusc.2018.12.189

    Article  CAS  Google Scholar 

  40. D. Xiao, C. Lu, C. Chen, S. Yuan, CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium–sulfur batteries. Energy Storage Mater. 10, 216–222 (2018). https://doi.org/10.1016/j.ensm.2017.05.015

    Article  Google Scholar 

  41. X. Qian, L. Jin, L. Zhu, S. Yao, D. Rao, X. Shen, X. Xi, K. Xiao, S. Qin, CeO2 nanodots decorated ketjen black for high performance lithium–sulfur batteries. RSC Adv. 6(112), 111190–111196 (2016). https://doi.org/10.1039/c6ra24156e

    Article  CAS  Google Scholar 

  42. H. Lin, S. Zhang, T. Zhang, S. Cao, H. Ye, Q. Yao, G.W. Zheng, J.Y. Lee, A cathode-integrated sulfur-deficient Co9S8 Catalytic Interlayer for the reutilization of lost polysulfides in Lithium–sulfur batteries. ACS Nano. 13(6), 7073–7082 (2019). https://doi.org/10.1021/acsnano.9b02374

    Article  CAS  Google Scholar 

  43. Z. Yu, N. Zhang, X. Zhang, Y. Li, G. Xie, W. Ge, L. Zhang, T. Zhang, Synthesis and research of layered CoS/graphene nanoflakes as sulfur cathode for high-energy lithium sulfur batteries. J. Electroanal. Chem. 854(3), 113524–113550 (2019). https://doi.org/10.1016/j.jelechem.2019.113524

    Article  CAS  Google Scholar 

  44. L. Liu, G. Xia, D. Wang, J. Huang, J. Duan, Y. Zhang, P. Dong, Y. Zhang, Biomass-derived self-supporting sulfur host with NiS/C composite for high-loading Li–S battery cathode. Sci. Chin. Technol. Sci. 66(1), 181–192 (2022). https://doi.org/10.1007/s11431-022-2226-8

    Article  CAS  Google Scholar 

  45. J.-L. Yang, S.-X. Zhao, Y.-M. Lu, X.-T. Zeng, W. Lv, G.-Z. Cao, ZnS spheres wrapped by an ultrathin wrinkled carbon film as a multifunctional interlayer for long-life Li–S batteries. J. Mater. Chem. A 8(1), 231–241 (2020). https://doi.org/10.1039/c9ta10560c

    Article  CAS  Google Scholar 

  46. T. Chen, L. Ma, B. Cheng, R. Chen, Y. Hu, G. Zhu, Y. Wang, J. Liang, Z. Tie, J. Liu, Z. Jin, Metallic and polar Co 9 S 8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239–248 (2017). https://doi.org/10.1016/j.nanoen.2017.05.064

    Article  CAS  Google Scholar 

  47. C. Dai, L. Hu, X. Li, Q. Xu, R. Wang, H. Liu, H. Chen, S.-J. Bao, Y. Chen, G. Henkelman, C.M. Li, M. Xu, Chinese knot-like electrode design for advanced Li–S batteries. Nano Energy 53, 354–361 (2018). https://doi.org/10.1016/j.nanoen.2018.08.065

    Article  CAS  Google Scholar 

  48. J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on Carbon Fiber Paper for High-Performance Pseudocapacitors. Nano Lett. 14(2), 831–838 (2014). https://doi.org/10.1021/nl404199v

    Article  CAS  Google Scholar 

  49. H. Zhang, G. Liu, J. Li, H. Cui, Y. Liu, M. Wang, Trapping and catalytic conversion of polysulfides by kirkendall effect built hollow NiCo2S4 nano-prisms for advanced sulfur cathodes in Li–S Battery. J. Mater. Sci. 56(6), 4328–4340 (2020). https://doi.org/10.1007/s10853-020-05511-8

    Article  CAS  Google Scholar 

  50. Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Powering Lithium–sulfur Battery performance by propelling Polysulfide Redox at Sulfiphilic hosts. Nano Lett. 16(1), 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166

    Article  CAS  Google Scholar 

  51. K. Sun, C.A. Cama, R.A. DeMayo, D.C. Bock, X. Tong, D. Su, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, H. Gan, Interaction of FeS2 and Sulfur in Li-S Battery System. J. Electrochem. Soc. 164(1), A6039 (2016). https://doi.org/10.1149/2.0041701jes

    Article  CAS  Google Scholar 

  52. B. Long, Z. Qiao, J. Zhang, S. Zhang, M.-S. Balogun, J. Lu, S. Song, Y. Tong, Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium–sulfur batteries. J. Mater. Chem. A 7(18), 11370–11378 (2019). https://doi.org/10.1039/c9ta01358j

    Article  CAS  Google Scholar 

  53. S. Li, P. Xu, M.K. Aslam, C. Chen, A. Rashid, G. Wang, L. Zhang, B. Mao, Propelling polysulfide conversion for high-loading lithium–sulfur batteries through highly sulfiphilic NiCo2S4 nanotubes. Energy Storage Mater. 27, 51–60 (2020). https://doi.org/10.1016/j.ensm.2020.01.017

    Article  Google Scholar 

  54. B. Liu, S. Huang, D. Kong, J. Hu, H.Y. Yang, Bifunctional NiCo2S4 catalysts supported on a carbon textile interlayer for ultra-stable Li–S Battery. J. Mater. Chem. A 7(13), 7604–7613 (2019). https://doi.org/10.1039/c9ta00701f

    Article  CAS  Google Scholar 

  55. Y.H. Long Kong, I. Taniguchi, Synthesis and characterization of sulfur–carbon–vanadium pentoxide composites for improved electrochemical properties of lithium–sulfur batteries. Accepted Manuscr. (2016). https://doi.org/10.1016/j.materresbull.2015.08.036

    Article  Google Scholar 

  56. I.T. Long Konga, Electrochemical properties of Porous V2O5/Sulfur/Carbon Composite Electrode Prepared using a combination of Aerosol and Powder technologies. ECS Trans. 75(18), 165–190 (2017). https://doi.org/10.1149/07518.0165ecst

    Article  CAS  Google Scholar 

  57. R. Saroha, J. Heo, Y. Liu, N. Angulakshmi, Y. Lee, K.-K. Cho, H.-J. Ahn, J.-H. Ahn, V2O3-decorated carbon nanofibers as a robust interlayer for long-lived, high-performance, room-temperature sodium–sulfur batteries. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.134205

    Article  Google Scholar 

  58. B. Chen, J. Wei, X. Qiao, D. Liang, Y. Ji, V2O5 plates anchored in CNTS composite materials with a network structure as polysulfide capture for lithium–sulfur Battery. Ceram. Int. 48(21), 32348–32356 (2022). https://doi.org/10.1016/j.ceramint.2022.07.177

    Article  CAS  Google Scholar 

  59. B. Zhang, S. Zhao, Z. Tang, P. Xie, A. Natarajan, Y. Zhou, X. Tian, High-performance three-dimensional flower-like CoS/MWCNT composite host for Li–S batteries. J. Solid State Electrochem. 26(2), 389–400 (2021). https://doi.org/10.1007/s10008-021-05066-x

    Article  CAS  Google Scholar 

  60. S. Wang, J. Guo, R. Guo, X. Sun, F. Li, T. Li, X. Zhao, Y. Luo, CoS2 nanospheres anchored on 3D N-doped carbon skeleton derived from bacterial cellulose for lithium–sulfur batteries. J. Electrochem. Soc. (2021). https://doi.org/10.1149/1945-7111/abdeee

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52064035), the Key Research and Development Program of Gansu Province (22YF7GA157), and the Natural Science Foundation of Zhejiang Province (LGG22E020003).

Author information

Authors and Affiliations

Authors

Contributions

FZ and YM: guided all the experimental design, and led the manuscript preparation and revision work. XL: did most of the experiments, data analysis, and prepared the draft manuscript. YX and XW: did some tests. MX: conducted some tests and revised draft manuscript. All of the authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Mingjun Xiao or Fuliang Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Meng, Y., Wang, X. et al. Preparation of NiCo2S4/carbon hollow sphere for long cycle lithium sulfur batteries. J Mater Sci: Mater Electron 35, 83 (2024). https://doi.org/10.1007/s10854-023-11890-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11890-w

Navigation