Skip to main content
Log in

Understanding the role of precursor concentration in the hydrothermal synthesis of nickel phosphate hydrate for supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the developing technology, the demand for energy storage devices has been ever-increasing. Supercapacitors over the years have delivered high power density along with a moderate energy density. Herein, this study reports Nickel Phosphate Hydrate (Ni(PO4)3*8H2O) (NPH) as a battery-type electrode which was synthesized using a hydrothermal method. The formation of NPH on the nickel (Ni) foam was verified by the X-ray diffraction (XRD) technique which provided information about the monoclinic structure and the “I2/m” space group of the material. The morphology of the material was studied using scanning electron microscopy (SEM) which demonstrated a micro-slab like morphology. The electrochemical characteristics were evaluated in a 1 M KOH electrolyte with a potential window of − 0.2 and 0.55 V vs. SCE, the electrode delivered an areal capacitance of 3475.76 mF cm−2 at 10 mA cm−2. Furthermore, the material delivered an energy density of 173.78 µWh cm−2 while retaining ~ 84.74% of its initial capacitance over 1000 charge-discharge cycles showing its promising characteristics for the future of energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). https://doi.org/10.1038/nature11475

    Article  ADS  CAS  PubMed  Google Scholar 

  2. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014). https://doi.org/10.1126/science.1249625

    Article  ADS  CAS  PubMed  Google Scholar 

  3. A.A. Kulkarni, N.K. Gaikwad, T.S. Bhat, Black phosphorus: envisaging the opportunities for supercapacitors. J. Electroanal. Chem. 942, 117543 (2023). https://doi.org/10.1016/j.jelechem.2023.117543

    Article  CAS  Google Scholar 

  4. A.M. Teli, S.A. Beknalkar, S.M. Mane, T.S. Bhat, B.B. Kamble, S.B. Patil, S.B. Sadale, J.C. Shin, Electrodeposited crumpled MoS2 nanoflakes for asymmetric supercapacitor. Ceram. Int. 48, 29002–29010 (2022). https://doi.org/10.1016/j.ceramint.2022.04.208

    Article  CAS  Google Scholar 

  5. S. Zhang, N. Pan, S.P. Evaluation, Adv. Energy Mater. 5, 1401401 (2015). https://doi.org/10.1002/aenm.201401401

    Article  CAS  Google Scholar 

  6. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730 (2015). https://doi.org/10.1039/C4EE03229B

    Article  CAS  Google Scholar 

  7. D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44, 1777–1790 (2015). https://doi.org/10.1039/C4CS00266K

    Article  CAS  PubMed  Google Scholar 

  8. S.S. Rendale, A.A. Kulkarni, H.M. Yadav, K.K.K. Sharma, T.S. Bhat, Review on MnCo2S4-based composite materials for supercapacitors. Nano Trends 4, 100022 (2023). https://doi.org/10.1016/j.nwnano.2023.100022

    Article  Google Scholar 

  9. S.S. Patil, P.S. Patil, 3D bode analysis of nickel pyrophosphate electrode: a key to understanding the charge storage dynamics. Electrochim. Acta 451, 142278 (2023). https://doi.org/10.1016/j.electacta.2023.142278

    Article  CAS  Google Scholar 

  10. M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors. Nat. Energy 1, 16070 (2016). https://doi.org/10.1038/nenergy.2016.70

    Article  ADS  CAS  Google Scholar 

  11. A.A. Kulkarni, V.A. Savekar, T.S. Bhat, P.S. Patil, Recent advances in metal pyrophosphates for electrochemical supercapacitors: a review. J. Energy Storage. 52, 104986 (2022). https://doi.org/10.1016/j.est.2022.104986

    Article  Google Scholar 

  12. A.A. Kulkarni, N.K. Gaikwad, A.P. Salunkhe, R.M. Dahotre, T.S. Bhat, P.S. Patil, 2D MXene integrated strategies: a bright future for supercapacitors. J. Energy Storage 71, 107975 (2023). https://doi.org/10.1016/j.est.2023.107975

    Article  Google Scholar 

  13. Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem Rev 118, 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252

    Article  CAS  PubMed  Google Scholar 

  14. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29, 1605336 (2017). https://doi.org/10.1002/adma.201605336

    Article  CAS  Google Scholar 

  15. J. Cao, J. Li, L. Li, Y. Zhang, D. Cai, D. Chen, W. Han, Mn-Doped Ni/Co LDH nanosheets grown on the natural N-Dispersed PANI-Derived porous carbon template for a flexible asymmetric supercapacitor. ACS sustain. Chem. Eng. 7, 10699–10707 (2019). https://doi.org/10.1021/acssuschemeng.9b01343

    Article  CAS  Google Scholar 

  16. S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D. Jiang, V. Presser, V. Augustyn, Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020). https://doi.org/10.1021/acs.chemrev.0c00170

    Article  CAS  PubMed  Google Scholar 

  17. T.S. Bhat, S.A. Jadhav, S.A. Beknalkar, S.S. Patil, P.S. Patil, MnO2 core-shell type materials for high-performance supercapacitors: a short review. Inorg Chem Commun 141, 109493 (2022). https://doi.org/10.1016/j.inoche.2022.109493

    Article  CAS  Google Scholar 

  18. A.A. Kulkarni, N.K. Gaikwad, A.P. Salunkhe, R.M. Dahotre, T.S. Bhat, P.S. Patil, An ensemble of progress and future status of piezo-supercapacitors. J. Energy Storage 65, 107362 (2023). https://doi.org/10.1016/j.est.2023.107362

    Article  Google Scholar 

  19. S.S. Rendale, S.A. Beknalkar, A.M. Teli, J.C. Shin, T.S. Bhat, Hydrothermally synthesized aster flowers of MnCo2O4 for development of high-performance asymmetric coin cell supercapacitor. J Electroanal Chem 932, 117253 (2023). https://doi.org/10.1016/j.jelechem.2023.117253

    Article  CAS  Google Scholar 

  20. N. Pinna, N. Goubard-Bretesché, Fluoro(Phosphates, Sulfates) or (phosphate, sulfate) fluorides: why does it matter? Adv. Energy Mater. 11, 2002971 (2021). https://doi.org/10.1002/aenm.202002971

    Article  CAS  Google Scholar 

  21. S.S. Patil, J.C. Shin, P.S. Patil, Binder free hydrothermally synthesized nickel phosphate hydrate microplates on nickel foam for supercapacitors. Ceram Int 48, 29484–29492 (2022). https://doi.org/10.1016/j.ceramint.2022.07.050

    Article  CAS  Google Scholar 

  22. A.M. Teli, T.S. Bhat, S.A. Beknalkar, S.M. Mane, L.S. Chaudhary, D.S. Patil, S.A. Pawar, H. Efstathiadis, Cheol Shin, Bismuth manganese oxide based electrodes for asymmetric coin cell supercapacitor. Chem. Eng. J. 430, 133138 (2022). https://doi.org/10.1016/j.cej.2021.133138

    Article  CAS  Google Scholar 

  23. A.A. Kulkarni, N.K. Gaikwad, A.P. Salunkhe, R.M. Dahotre, T.S. Bhat, Transition metal phosphates: a paradigm for electrochemical supercapacitors. J. Electroanal. Chem. 948, 117795 (2023). https://doi.org/10.1016/j.jelechem.2023.117795

    Article  CAS  Google Scholar 

  24. T.S. Bhat, A.S. Kalekar, D.S. Dalavi, C.C. Revadekar, A.C. Khot, T.D. Dongale, P.S. Patil, Hydrothermal synthesis of nanoporous lead selenide thin films: photoelectrochemical and resistive switching memory applications. J. Mater. Sci. Mater. Electron 30, 17725–17734 (2019). https://doi.org/10.1007/s10854-019-02122-1

    Article  CAS  Google Scholar 

  25. S.S. Patil, T.S. Bhat, A.M. Teli, S.A. Beknalkar, S.B. Dhavale, M.M. Faras, M.M. Karanjkar, P.S. Patil, Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng. Sci. (2020). https://doi.org/10.30919/es8d1140

    Article  Google Scholar 

  26. J.-H. Yang, J. Tan, D. Ma, Nickel phosphate molecular sieve as electrochemical capacitors material. J. Power Sources 260, 169–173 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.033

    Article  ADS  CAS  Google Scholar 

  27. J. Zhao, H. Pang, J. Deng, Y. Ma, B. Yan, X. Li, S. Li, J. Chen, W. Wang, Mesoporous uniform ammonium nickel phosphate hydrate nanostructures as high performance electrode materials for supercapacitors. CrystEngComm 15, 5950 (2013). https://doi.org/10.1039/c3ce40712h

    Article  CAS  Google Scholar 

  28. N. Li, Z. Xu, Y. Liu, Z. Hu, Fructose 1,6-bisphosphate trisodium salt as a new organic phosphorus source for synthesis of nanoporous amorphous nickel phosphate microspheres electrode materials in supercapacitors. J. Alloys Compd. 789, 613–621 (2019). https://doi.org/10.1016/j.jallcom.2019.02.308

    Article  CAS  Google Scholar 

  29. B.A. Mahmoud, A.A. Mirghni, O. Fasakin, K.O. Oyedotun, N. Manyala, Bullet-like microstructured nickel ammonium phosphate/graphene foam composite as positive electrode for asymmetric supercapacitors. RSC Adv. 10, 16349–16360 (2020). https://doi.org/10.1039/D0RA02300K

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. X. Zhang, J. Li, Y. Sun, Q. Liu, J. Guo, Hybridized ni(PO3)2-MnPO4 nanosheets array with excellent electrochemical performances for overall water splitting and supercapacitor. Electrochim. Acta 299, 835–843 (2019). https://doi.org/10.1016/j.electacta.2019.01.074

    Article  CAS  Google Scholar 

  31. T.S. Bhat, A.M. Teli, S.A. Beknalkar, S.M. Mane, P.D. Tibile, P.S. Patil, H.J. Kim, J.C. Shin, Activated carbon mediated hydrothermally synthesized CuO thin films for electrochemical supercapacitors. ECS J. Solid State Sci. Technol. 11, 063003 (2022). https://doi.org/10.1149/2162-8777/ac7074

    Article  ADS  CAS  Google Scholar 

  32. F.S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, S. Ramesh, Ultrahigh capacitance of amorphous nickel phosphate for asymmetric supercapacitor applications. RSC Adv. 6, 76298–76306 (2016). https://doi.org/10.1039/C6RA15111F

    Article  ADS  CAS  Google Scholar 

  33. B. Senthilkumar, K.V. Sankar, L. Vasylechko, Y.-S. Lee, R.K. Selvan, Synthesis and electrochemical performances of maricite-NaMPO4 (M = Ni Co, Mn) electrodes for hybrid supercapacitors. RSC Adv. 4, 53192–53200 (2014). https://doi.org/10.1039/C4RA06050D

    Article  ADS  CAS  Google Scholar 

  34. T. Wang, Q. Hao, J. Liu, J. Zhao, J. Bell, H. Wang, High capacitive amorphous barium nickel phosphate nanofibers for electrochemical energy storage. RSC Adv. 6, 45986–45992 (2016). https://doi.org/10.1039/C6RA08149E

    Article  ADS  CAS  Google Scholar 

  35. M.E. Abdelsalam, I. Elghamry, A.H. Touny, M.M. Saleh, Nickel phosphate/carbon fibre nanocomposite for high-performance pseudocapacitors. J. Appl. Electrochem. 49, 45–55 (2019). https://doi.org/10.1007/s10800-018-1279-y

    Article  CAS  Google Scholar 

  36. Q. Li, Y. Xu, S. Zheng, X. Guo, H. Xue, H. Pang, Recent progress in some amorphous materials for supercapacitors. Small 14, 1800426 (2018). https://doi.org/10.1002/smll.201800426

    Article  CAS  Google Scholar 

  37. S. Yan, K.P. Abhilash, L. Tang, M. Yang, Y. Ma, Q. Xia, H. Guo, H. Xia, Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 15(4), 1804371 (2018)

    Article  Google Scholar 

  38. N. Padmanathan, H. Shao, K.M. Razeeb, Multifunctional nickel phosphate Nano/Microflakes 3D electrode for electrochemical energy storage, nonenzymatic glucose, and sweat pH sensors. ACS Appl. Mater. Interfaces 10, 8599–8610 (2018). https://doi.org/10.1021/acsami.7b17187

    Article  CAS  PubMed  Google Scholar 

  39. T.L. Barr, Recent advances in x-ray photoelectron spectroscopy studies of oxides. J. Vac. Sci. Technol. Vac. Surf. Films 9, 1793–1805 (1991). https://doi.org/10.1116/1.577464

    Article  ADS  CAS  Google Scholar 

  40. B. Zhao, X.-K. Ke, J.-H. Bao, C.-L. Wang, L. Dong, Y.-W. Chen, H.-L. Chen, Synthesis of Flower-Like NiO and effects of morphology on its Catalytic properties. J. Phys. Chem. C 113, 14440–14447 (2009). https://doi.org/10.1021/jp904186k

    Article  CAS  Google Scholar 

  41. X. Yang, G. Xu, Z. Ren, X. Wei, C. Chao, S. Gong, G. Shen, G. Han, The hydrothermal synthesis and formation mechanism of single-crystalline perovskite BiFeO3 microplates with dominant (012) facets. CrystEngComm 16, 4176–4182 (2014). https://doi.org/10.1039/C3CE42488J

    Article  CAS  Google Scholar 

  42. A.P. Moura, L.S. Cavalcante, J.C. Sczancoski, D.G. Stroppa, E.C. Paris, A.J. Ramirez, J.A. Varela, E. Longo, Structure and growth mechanism of CuO plates obtained by microwave-hydrothermal without surfactants. Adv. Powder Technol. 21, 197–202 (2010). https://doi.org/10.1016/j.apt.2009.11.007

    Article  CAS  Google Scholar 

  43. M. Bajdich, M. García-Mota, A. Vojvodic, J.K. Nørskov, A.T. Bell, Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013). https://doi.org/10.1021/ja405997s

    Article  CAS  PubMed  Google Scholar 

  44. H. Kim, J. Park, I. Park, K. Jin, S.E. Jerng, S.H. Kim, K.T. Nam, K. Kang, Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 6, 8253 (2015). https://doi.org/10.1038/ncomms9253

    Article  ADS  CAS  PubMed  Google Scholar 

  45. X. Peng, H. Chai, Y. Cao, Y. Wang, H. Dong, D. Jia, W. Zhou, Facile synthesis of cost-effective Ni3(PO4)2·8H2O microstructures as a supercapattery electrode material. Mater. Today Energy 7, 129–135 (2018). https://doi.org/10.1016/j.mtener.2017.12.004

    Article  Google Scholar 

  46. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018). https://doi.org/10.1021/acs.jchemed.7b00361

    Article  CAS  Google Scholar 

  47. T. Schoetz, L.W. Gordon, S. Ivanov, A. Bund, D. Mandler, R.J. Messinger, Disentangling faradaic, pseudocapacitive, and capacitive charge storage: a tutorial for the characterization of batteries, supercapacitors, and hybrid systems. Electrochim. Acta 412, 140072 (2022). https://doi.org/10.1016/j.electacta.2022.140072

    Article  CAS  Google Scholar 

  48. Q. Mahmood, S.K. Park, K.D. Kwon, S.-J. Chang, J.-Y. Hong, G. Shen, Y.M. Jung, T.J. Park, S.W. Khang, W.S. Kim, J. Kong, H.S. Park, Transition from diffusion-controlled intercalation into extrinsically pseudocapacitive charge storage of MoS2 by nanoscale heterostructuring. Adv. Energy Mater. 6, 1501115 (2016). https://doi.org/10.1002/aenm.201501115

    Article  CAS  Google Scholar 

  49. P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020). https://doi.org/10.1038/s41563-020-0747-z

    Article  ADS  CAS  PubMed  Google Scholar 

  50. N.R. Chodankar, H.D. Pham, A.K. Nanjundan, J.F.S. Fernando, K. Jayaramulu, D. Golberg, Y. Han, D.P. Dubal, True meaning of Pseudocapacitors and their performance Metrics: asymmetric versus hybrid supercapacitors. Small 16, 2002806 (2020). https://doi.org/10.1002/smll.202002806

    Article  CAS  Google Scholar 

  51. S. Zhang, H. Gao, J. Zhou, Reduced graphene oxide-modified Ni-Co phosphate nanosheet self-assembled microplates as high-performance electrode materials for supercapacitors. J. Alloys Compd. 746, 549–556 (2018). https://doi.org/10.1016/j.jallcom.2018.02.008

    Article  CAS  Google Scholar 

  52. Z. Wang, J. Gu, X. Liu, X. Sun, J. Li, S. Li, S. Tang, B. Wen, F. Gao, Hierarchical self-assembly flower-like ammonium nickel phosphate as high-rate performance electrode material for asymmetric supercapacitors with enhanced energy density. Nanotechnology 29, 425401 (2018). https://doi.org/10.1088/1361-6528/aad75f

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Y. Tang, Z. Liu, W. Guo, T. Chen, Y. Qiao, S. Mu, Y. Zhao, F. Gao, Honeycomb-like mesoporous cobalt nickel phosphate nanospheres as novel materials for high performance supercapacitor. Electrochim. Acta 190, 118–125 (2016). https://doi.org/10.1016/j.electacta.2016.01.042

    Article  CAS  Google Scholar 

  54. S.S. Pujari, V.V. Patil, A.S. Patil, V.G. Parale, H.-H. Park, J.L. Gunjakar, C.D. Lokhande, U.M. Patil, Amorphous, hydrous nickel phosphate thin film electrode prepared by SILAR method as a highly stable cathode for hybrid asymmetric supercapacitor. Synth. Met. 280, 116876 (2021). https://doi.org/10.1016/j.synthmet.2021.116876

    Article  CAS  Google Scholar 

  55. K. Raju, K.I. Ozoemena, Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors. Sci. Rep. 5, 17629 (2015). https://doi.org/10.1038/srep17629

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. Surya Kiran, B. Ramulu, S. Junied Arbaz, E. Girija Shankar, M. Nagaraju, J.S. Yu, Rational construction of porous marigold flower-like nickel molybdenum phosphates via ion exchange for high-performance long-lasting hybrid supercapacitors. Inorg. Chem. Front. 10, 2075–2087 (2023). https://doi.org/10.1039/D2QI02697J

    Article  Google Scholar 

  57. S.E. Berrabah, A. Benchettara, F. Smaili, A. Benchettara, A. Mahieddine, High performance hybrid supercapacitor based on electrochemical deposed of nickel hydroxide on zinc oxide supported by graphite electrode. J. Alloys Compd. 942, 169112 (2023). https://doi.org/10.1016/j.jallcom.2023.169112

    Article  CAS  Google Scholar 

  58. M.M. Momeni, S. Navandian, H.M. Aydisheh, B.-K. Lee, Photo-assisted rechargeable supercapacitors based on nickel-cobalt-deposited tungsten-doped titania photoelectrodes: a novel self-powered supercapacitor. J. Power Sources 557, 232588 (2023). https://doi.org/10.1016/j.jpowsour.2022.232588

    Article  CAS  Google Scholar 

  59. H. Wang, L. Tian, X. Zhao, M. Ali, K. Yin, Z. Xing, Situ growth MoS2/NiS composites on ni foam as electrode materials for supercapacitors. Mater. Today Commun. (2023). https://doi.org/10.1016/j.mtcomm.2022.105041

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Physics Instrumentation Facility Centre (PIFC), Department of Physics, Shivaji University, Kolhapur, M.S., India and Common Facility Centre (CFC) at Shivaji University, Kolhapur, M.S., India for providing characterization facilities.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: TSB. Methodology: AAK, NKG. Formal analysis and investigation: SSP, APS, RMD. Writing—original draft preparation: AAK. Writing—review and editing: AAK. Funding acquisition: PSP. Resources: TSB, PSP. Supervision: TSB.

Corresponding author

Correspondence to Tejasvinee S. Bhat.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This article does not involve any experiments with human participants or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 268 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, N.K., Patil, S.S., Kulkarni, A.A. et al. Understanding the role of precursor concentration in the hydrothermal synthesis of nickel phosphate hydrate for supercapacitors. J Mater Sci: Mater Electron 35, 288 (2024). https://doi.org/10.1007/s10854-023-11883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11883-9

Navigation