Skip to main content
Log in

Trace Cu2+ detection based on GH-PEDOT:PSS-Pt NP-modified glassy carbon electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We successfully developed a GH-PP-Pt/GCE electrode by compounding graphene hydrogel (GH) with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), and in situ electrodeposition of Pt nanoparticles. The experimental results prove that the performance of GH-PP-Pt/GCE to trace copper ions significantly improved, the sensitivity reaches 45.673 µA/µmol L−1, the limit of detection is as low as 9.9 nmol L−1, and the linear range is 0.08–10 µmol L−1. Its detection ability is at a relatively high level among the existing Cu2+ electrochemical detection sensors, and the repeatability, stability, and anti-interference are good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. M. Araya, B.H. Chen, L.M. Klevay et al., Confirmation of an acute no-ob served-adverse-effect and low-observed-adverse-effect level for copper in bottled drinking water in a multi-site international study. Regul. Toxicol. Pharmacol. 38(3), 389–399 (2003)

    Article  CAS  Google Scholar 

  2. M. Pohanka, Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratisl Lek Listy 120(6), 397–409 (2019)

    CAS  Google Scholar 

  3. A. Sinkovic, A. Strdin, F. Svensek, Severe acute copper sulphate Poisoning: a case report. Arh Hig Rada Toksikol 59(1), 31–35 (2008)

    Article  CAS  Google Scholar 

  4. X.B. Yin, X.P. Yan, Y. Jiang et al., On-line coupling of capillary electrophoresis to hydride generation atomic fluorescence spectrometry for arsenic speciation analysis. Anal. Chem. 74(15), 3720–3725 (2002)

    Article  CAS  Google Scholar 

  5. J. Aggett, A.C. Aspell, Determination of Arsenic(III) and total Arsenic by atomic-absorption spectroscopy. Analyst 101(1202), 341–347 (1976)

    Article  CAS  Google Scholar 

  6. X.P. Yan, R. Kerrich, M.J. Hendry, Determination of (ultra)trace amounts of arsenic(III) and arsenic(V) in water by inductively coupled plasma mass spectrometry coupled with flow injection on-line sorption preconcentration and separation in a knotted reactor. Anal. Chem. 70(22), 4736–4742 (1998)

    Article  CAS  Google Scholar 

  7. M. Hossien-poor-Zaryabi, M. Chamsaz, T. Heidari et al., Application of dispersive liquid–liquid micro-extraction using mean centering of ratio spectra method for trace determination of mercury in food and environmental samples. Food. Anal. Methods 7(2), 352–359 (2014)

    Article  Google Scholar 

  8. J.M. Gong, T. Zhou, D.D. Song et al., Stripping voltammetric detection of Mercury(II) based on a bimetallic Au-Pt inorganic–organic hybrid nanocomposite modified glassy carbon electrode. Anal. Chem. 82(2), 567–573 (2010)

    Article  CAS  Google Scholar 

  9. E.L.S. Wong, E. Chow, J.J. Gooding, The electrochemical detection of cadmium using surface-immobilized DNA. Electrochem. Commun. 9(4), 845–849 (2007)

    Article  CAS  Google Scholar 

  10. S.L. Ting, S.J. Ee, A. Ananthanarayanan et al., Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim. Acta 172, 7–11 (2015)

    Article  CAS  Google Scholar 

  11. X.N. Lin, Z.W. Lu, Y.X. Zhang et al., A glassy carbon electrode modified with a bismuth film and laser etched graphene for simultaneous voltammetric sensing of cd(II) and pb(II). Microchim. Acta 185(9), 438 (2018)

    Article  Google Scholar 

  12. E. Majid, S. Hrapovic, Y.L. Liu et al., Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal. Chem. 78(3), 762–769 (2006)

    Article  CAS  Google Scholar 

  13. M.R. Rahman, T. Okajima, T. Ohsaka, Selective detection of as(III) at the au(III)-like polycrystalline gold electrode. Anal. Chem. 82(22), 9169–9176 (2010)

    Article  CAS  Google Scholar 

  14. B.K. Jena, C.R. Raj, Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Anal. Chem. 80(13), 4836–4844 (2008)

    Article  CAS  Google Scholar 

  15. K. Ravichandran, D.S. Vasanthi, P. Kavitha et al., Vermiwash-derived enzyme-activated ZnO nanomaterial towards two cascading applications: enhanced photocatalysis and effective irrigation. J. Mater. Sci. 32, 9584–9595 (2021)

    CAS  Google Scholar 

  16. P. Bindra, A. Hazra, Capacitive gas and vapor sensors using nanomaterials. J. Mater. Sci. 29, 6129–6148 (2018)

    CAS  Google Scholar 

  17. J.J. Gooding, J. Shein, L.M.H. Lai, Using nanoparticle aggregation to give an ultrasensitive amperometric metal ion sensor. Electrochem. Commun. 11(10), 2015–2018 (2009)

    Article  CAS  Google Scholar 

  18. T. Wu, T. Xu, Z. Ma, Sensitive electrochemical detection of copper ions based on the copper(II) ion assisted etching of Au@Ag nanoparticles. Analyst 140(23), 8041–8047 (2015)

    Article  CAS  Google Scholar 

  19. W.J. Li, X.Z. Yao, Z. Guo et al., Fe3O4 with novel nanoplate-stacked structure: surfactant-free hydrothermal synthesis and application in detection of heavy metal ions. J. Electroanal. Chem. 749, 75–82 (2015)

    Article  CAS  Google Scholar 

  20. D.K. Neethipathi, A. Beniwal, A.M. Bass et al., MoS2 modified screen printed carbon electrode based flexible electrochemical sensor for detection of copper ions in water. IEEE Sens. J. 23(8), 8146–8153 (2023)

    Article  CAS  Google Scholar 

  21. D.A.C. Brownson, C.E. Banks, Graphene electrochemistry: an overview of potential applications. Analyst 135(11), 2768–2778 (2010)

    Article  CAS  Google Scholar 

  22. G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. Acs Nano 2(7), 1487–1491 (2008)

    Article  CAS  Google Scholar 

  23. C. Gao, X.Y. Yu, R.X. Xu et al., AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions. ACS Appl. Mater. Interfaces 4(9), 4672–4682 (2012)

    Article  CAS  Google Scholar 

  24. L. Zhang, G.Q. Shi, Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate Capability. J. Phys. Chem. C 115(34), 17206–17212 (2011)

    Article  CAS  Google Scholar 

  25. X.W. Yang, J.W. Zhu, L. Qiu et al., Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater. 23(25), 2833–2838 (2011)

    Article  CAS  Google Scholar 

  26. Y.X. Xu, K.X. Sheng, C. Li et al., Self-assembled graphene hydrogel via a one-step hydrothermal process. Acs Nano 4(7), 4324–4330 (2010)

    Article  CAS  Google Scholar 

  27. U.N. Maiti, J. Lim, K.E. Lee et al., Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater. 26(4), 615–619 (2014)

    Article  CAS  Google Scholar 

  28. D. Zhao, L. Yu, D. Liu, Ultralight graphene/carbon nanotubes aerogels with compressibility and oil absorption properties. Materials 11(4), 641 (2018). https://doi.org/10.3390/ma11040641

    Article  CAS  Google Scholar 

  29. T. Takano, H. Masunaga, A. Fujiwara et al., PEDOT nanocrystal in highly conductive PEDOT:PSS polymer films. Macromolecules 45(9), 3859–3865 (2012)

    Article  CAS  Google Scholar 

  30. N.G. Yasri, A.J. Halabi, G. Istamboulie et al., Chronoamperometric determination of lead ions using PEDOT:PSS modified carbon electrodes. Talanta 85(5), 2528–2533 (2011)

    Article  CAS  Google Scholar 

  31. Y.K. Kim, M.H. Kim, D.H. Min, Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem. Commun. 47(11), 3195–3197 (2011)

    Article  CAS  Google Scholar 

  32. B. Cheng, L. Zhou, L. Lu et al., Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sens. Actuators B 259, 364–371 (2018)

    Article  CAS  Google Scholar 

  33. M. Lu, Y. Deng, Y. Luo et al., Graphene aerogel-metal-organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal. Chem. 91(1), 888–895 (2019)

    Article  CAS  Google Scholar 

  34. S. Hao, J. Li, Y. Li et al., Facile synthesis of a 3D MnO2 nanowire/Ni foam electrode for the electrochemical detection of Cu(ii). Anal. Methods 8(24), 4919–4925 (2016)

    Article  CAS  Google Scholar 

  35. J. Shang, M. Zhao, H. Qu et al., New application of p-n junction in electrochemical detection: the detection of heavy metal ions. J. Electroanal. Chem. 855, 113624 (2019)

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (11475017).

Author information

Authors and Affiliations

Authors

Contributions

Hao Changshi performed the experiment, Yan Luting contributed significantly to analysis and manuscript preparation, and Wang Yiding, Duan Shaojing, Liu Bo, and Wu Hongpeng helped perform the analysis with constructive discussions.

Corresponding authors

Correspondence to Wu Hongpeng or Yan Luting.

Ethics declarations

Competing interests

Not applicable.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 564.5 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Changshi, H., Yiding, W., Hongpeng, W. et al. Trace Cu2+ detection based on GH-PEDOT:PSS-Pt NP-modified glassy carbon electrode. J Mater Sci: Mater Electron 35, 56 (2024). https://doi.org/10.1007/s10854-023-11882-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11882-w

Navigation