Skip to main content
Log in

Effect of morphology and microstructure of NiCo nanoparticles on the electromagnetic shielding behavior of flexible and durable NiCo-coated carbon fibers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon fibers (CFs) coated with magnetic metal nanoparticles have attracted much consideration for enhanced electronic applications. Magnetic nickel/cobalt (Ni/Co) alloys were coated on the surface of CFs (NiCo-CFs) using the electroplating process. For the first time, different NiCo alloys were attained by adjusting the various Ni2+ to Co2+ mole ratios (1:0.5, 1:1 and 1:2). The surface morphology, elemental analysis, color, microstructure, weight gain, electrical conductivity and magnetic properties of the NiCo-CFs were investigated as a function of Ni2+ to Co2+ mole ratios. The surface morphology and elemental mapping demonstrated that NiCo alloy nanoparticles are uniformly coated on the CFs surfaces. With changing the Ni2+ to Co2+ molar ratio from 1:0.5 to 1:2, the average size of particles continuously increased from 83 ± 14 to 194 ± 42 nm. Moreover, with increasing nanoparticle size, the magnetic properties of NiCo alloys significantly improved. The change of the Ni:Co molar ratio to 1: 1 improved the microstructure properties of NiCo alloy, not only raising the electrical conductivity to 571.42 ± 25.61 S/cm but also enhancing EMI shielding efficiency (SE) to − 52.7 dB. The ultra-high durability of NiCo-CFs structure was confirmed by bending deformation and high-energy ultrasonic treatments. This study has revealed the possibility of using NiCo-CFs as high-durable EMI shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. V. Anju, M. Manoj, P. Mohanan, S.K. Narayanankutty, A comparative study on electromagnetic interference shielding effectiveness of carbon nanofiber and nanofibrillated cellulose composites. Synth. Met. 247, 285–297 (2019)

    CAS  Google Scholar 

  2. X. Chen, J. Liu, Z. Zhang, F. Pan, Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy. Mater. Des. 42, 327–333 (2012)

    CAS  Google Scholar 

  3. K. Nasouri, A.M. Shoushtari, M.R.M. Mojtahedi, Theoretical and experimental studies on EMI shielding mechanisms of multi-walled carbon nanotubes reinforced high performance composite nanofibers. J. Polym. Res. 23, 1–8 (2016)

    CAS  Google Scholar 

  4. L. Nayak, D. Khastgir, T.K. Chaki, A mechanistic study on electromagnetic shielding effectiveness of polysulfone/carbon nanofibers nanocomposites. J. Mater. Sci. 48, 1492–1502 (2013)

    CAS  Google Scholar 

  5. A.K. Mohanty et al., Electromagnetic interference shielding effectiveness of MWCNT filled poly (ether sulfone) and poly (ether imide) nanocomposites. Polym. Eng. Sci. 54(11), 2560–2570 (2014)

    CAS  Google Scholar 

  6. P. Bhawal, S. Ganguly, T.K. Das, S. Mondal, L. Nayak, N.C. Das, A comparative study of physico-mechanical and electrical properties of polymer-carbon nanofiber in wet and melt mixing methods. Mater. Sci. Eng. B 245, 95–106 (2019)

    CAS  Google Scholar 

  7. H. Duan et al., Effect of carbon nanofiller dimension on synergistic EMI shielding network of epoxy/metal conductive foams. Compos. A Appl. Sci. Manuf. 118, 41–48 (2019)

    CAS  Google Scholar 

  8. Y. Cheng, W. Zhu, X. Lu, C. Wang, Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding. Compos. Commun. 27, 100823 (2021)

    Google Scholar 

  9. N.H. Faisal et al., Thermal spray coatings for electromagnetic wave absorption and interference shielding: a review and future challenges. Adv. Eng. Mater. 24(7), 2200171 (2022)

    CAS  Google Scholar 

  10. K. Nasouri, A.M. Shoushtari, Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application. Compos. Sci. Technol. 145, 46–54 (2017)

    CAS  Google Scholar 

  11. A. Darvishzadeh, K. Nasouri, Manufacturing, modeling, and optimization of nickel-coated carbon fabric for highly efficient EMI shielding. Surf. Coat. Technol. 409, 126957 (2021)

    CAS  Google Scholar 

  12. H. Guan, D. Chung, Effect of the planar coil and linear arrangements of continuous carbon fiber tow on the electromagnetic interference shielding effectiveness, with comparison of carbon fibers with and without nickel coating. Carbon 152, 898–908 (2019)

    CAS  Google Scholar 

  13. S. Gupta, N.-H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152, 159–187 (2019)

    CAS  Google Scholar 

  14. G. Salimbeygi, K. Nasouri, A.M. Shoushtari, R. Malek, F. Mazaheri, Fabrication of polyvinyl alcohol/multi-walled carbon nanotubes composite electrospun nanofibres and their application as microwave absorbing material. Micro Nano Lett. 8(8), 455–459 (2013)

    CAS  Google Scholar 

  15. D. Lan et al., Impact mechanisms of aggregation state regulation strategies on the microwave absorption properties of flexible polyaniline. J. Colloid Interface Sci. 651, 494–503 (2023)

    CAS  Google Scholar 

  16. K. Nasouri, A.M. Shoushtari, Fabrication of magnetite nanoparticles/polyvinylpyrrolidone composite nanofibers and their application as electromagnetic interference shielding material. J. Thermoplast. Compos. Mater. 31(4), 431–446 (2018)

    CAS  Google Scholar 

  17. M. Amini, K. Nasouri, G. Askari, M. Shanbeh, A. Khoddami, Lightweight and highly flexible metal deposited composite fabrics for high-performance electromagnetic interference shielding at gigahertz frequency. Fibers Polym. 23(3), 800–806 (2022)

    CAS  Google Scholar 

  18. G. Salimbeygi, K. Nasouri, A.M. Shoushtari, R. Malek, F. Mazaheri, Microwave absorption properties of polyaniline/poly (vinyl alcohol)/multi-walled carbon nanotube composites in thin film and nanofiber layer structures. Macromol. Res. 23, 741–748 (2015)

    CAS  Google Scholar 

  19. D. Lan, H. Zhou, H. Wu, A polymer sponge with dual absorption of mechanical and electromagnetic energy. J. Colloid Interface Sci. 633, 92–101 (2023)

    CAS  Google Scholar 

  20. S. Geetha, K. Satheesh Kumar, C.R. Rao, M. Vijayan, D. Trivedi, EMI shielding: methods and materials—a review. J. Appl. Polym. Sci. 112(4), 2073–2086 (2009)

    CAS  Google Scholar 

  21. N. Maruthi, M. Faisal, N. Raghavendra, Conducting polymer based composites as efficient EMI shielding materials: a comprehensive review and future prospects. Synth. Met. 272, 116664 (2021)

    CAS  Google Scholar 

  22. S. Maity, A. Chatterjee, Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: a review. J. Ind. Text. 47(8), 2228–2252 (2018)

    CAS  Google Scholar 

  23. T. Govindasamy, N.K. Mathew, V.K. Asapu, V. Subramanian, B. Subramanian, Investigation on evaluation of Fe3S4–Carbon black nanohybrids for EMI shield in X-band region. Diam. Relat. Mater. 131, 109608 (2023)

    CAS  Google Scholar 

  24. A. Muhammad, M. Ncube, N. Aravinth, J. Muthu, Controlled deposition of single-walled carbon nanotubes doped nanofibers mats for improving the interlaminar properties of glass fiber hybrid composites. Polymers 15(4), 957 (2023)

    CAS  Google Scholar 

  25. M. Bleija et al., Poly (Butylene Succinate) hybrid multi-walled carbon nanotube/iron oxide nanocomposites: electromagnetic shielding and thermal properties. Polymers 15(3), 515 (2023)

    CAS  Google Scholar 

  26. S. Yang et al., Reduced graphene oxide layers full of bubbles for electromagnetic interference shielding. J. Mater. Chem. C 11(5), 1949–1959 (2023)

    CAS  Google Scholar 

  27. Q. Hu, Y. Duan, X. Zheng, W. Nie, L. Zou, Z. Xu, Lightweight, flexible, and highly conductive recycled carbon fiber felt for electromagnetic interference shielding. J. Alloy. Compd. 935, 168152 (2023)

    CAS  Google Scholar 

  28. A. Darvishzadeh, K. Nasouri, Broadband and tunable high-performance microwave absorption properties by Ni-coated carbon fibers. Mater. Chem. Phys. 274, 125127 (2021)

    CAS  Google Scholar 

  29. R. Rohini, S. Bose, Electrodeposited carbon fiber and epoxy based sandwich architectures suppress electromagnetic radiation by absorption. Compos. B Eng. 161, 578–585 (2019)

    CAS  Google Scholar 

  30. A. Darvishzadeh, K. Nasouri, Structural engineering of nickel-coated carbon fibers with high electrical conductivity for flexible EMI shielding. J. Mater. Sci. Mater. Electron. 33(8), 5648–5660 (2022)

    CAS  Google Scholar 

  31. Y. Zhu, H. Wang, G. Zhao, H. Cao, W. Wang, Aristate sphere Ni@ Carbon fibers with advanced electromagnetic interference shielding performances. J. Text. Inst. 114, 1–8 (2022)

    Google Scholar 

  32. J. Zeng, J. Xu, Microwave absorption properties of CuO/Co/carbon fiber composites synthesized by thermal oxidation. J. Alloy. Compd. 493(1–2), L39–L41 (2010)

    CAS  Google Scholar 

  33. H. Wang et al., Carbonized design of hierarchical porous carbon/Fe3O4@ Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustain. Chem. Eng. 6(9), 11801–11810 (2018)

    CAS  Google Scholar 

  34. D. Jin, X. Yang, Y. Wei, Preparation and enhancement microwave absorption properties of carbon fibers coated with CoNi alloy by solvothermal. J. Mater. Sci. Mater. Electron. 33(7), 4510–4522 (2022)

    CAS  Google Scholar 

  35. L. Wang, F. He, Y. Wan, Facile synthesis and electromagnetic wave absorption properties of magnetic carbon fiber coated with Fe–Co alloy by electroplating. J. Alloy. Compd. 509(14), 4726–4730 (2011)

    CAS  Google Scholar 

  36. X. Deng, C. Qiang, Magnetic properties and microwave absorption properties of carbon fibers coated with FeCo alloy. Int. J. Mater. Res. 104(2), 157–161 (2013)

    CAS  Google Scholar 

  37. Y. Zhang, T. Gan, J. Dong, Q. Liu, J. Wang, W. Shi, Enhanced magnetoimpedance effect of carbon fiber/Fe-based alloy coaxial composite by tensile stress. Carbon 93, 451–457 (2015)

    CAS  Google Scholar 

  38. Y. Wan et al., Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies. J. Magn. Magn. Mater. 399, 252–259 (2016)

    CAS  Google Scholar 

  39. R. Wang, F. He, Y. Wan, Y. Qi, Preparation and characterization of a kind of magnetic carbon fibers used as electromagnetic shielding materials. J. Alloy. Compd. 514, 35–39 (2012)

    CAS  Google Scholar 

  40. H. Guo, Z.Q. Chen, J.J. Li, L. Li, Study of Fe/Ni alloy coated carbon fibres prepared by electroplating. Surf. Eng. 35(10), 841–847 (2019)

    CAS  Google Scholar 

  41. J.T. Kim, C.W. Park, B.J. Kim, A study on synergetic EMI shielding behaviors of Ni-Co alloy-coated carbon fibers-reinforced composites. Synth. Met. 223, 212–217 (2017)

    CAS  Google Scholar 

  42. J. Li et al., Multifunctional carbon fiber@ NiCo/polyimide films with outstanding electromagnetic interference shielding performance. Chem. Eng. J. 427, 131937 (2022)

    CAS  Google Scholar 

  43. Y.J. Yim, J.J. Lee, A. Tugirumubano, S.H. Go, H.G. Kim, L.K. Kwac, Electromagnetic interference shielding behavior of magnetic carbon fibers prepared by electroless FeCoNi-plating. Materials 14(14), 3774 (2021)

    CAS  Google Scholar 

  44. E. Ameh, A review of basic crystallography and x-ray diffraction applications. Int. J. Adv. Manuf. Technol. 105, 3289–3302 (2019)

    Google Scholar 

  45. S. Bi, H. Zhao, L. Hou, Y. Lu, Enhanced electromagnetic interference shielding effects of cobalt-nickel polyalloy coated fabrics with assistance of rare earth elements. Fibers Polym. 19, 1084–1093 (2018)

    CAS  Google Scholar 

  46. P.J. Tsai, K.L. Chuang, C.J. Yang, H.T. Lee, F.H. Lu, Synthesis of Cu–Co bimetallic nanoparticles using TiN-coated electrodes for glucose-sensing applications. J. Alloy. Compd. 785, 191–199 (2019)

    CAS  Google Scholar 

  47. B. Zhang et al., High-performance microwave absorption epoxy composites filled with hollow nickel nanoparticles modified graphene via chemical etching method. Compos. Sci. Technol. 176, 54–63 (2019)

    CAS  Google Scholar 

  48. Z. Ranjkesh, K. Nasouri, Facile synthesis of novel porous nickel/carbon fibers obtained from cigarette butts for high-frequency microwave absorption. J. Environ. Chem. Eng. 10(1), 106969 (2022)

    CAS  Google Scholar 

  49. Y. Song et al., Microfluidic synthesis of cobalt nanoparticles. Chem. Mater. 18(12), 2817–2827 (2006)

    CAS  Google Scholar 

  50. Y. Shen et al., Tunable microwave absorption properties of nickel-carbon nanofibers prepared by electrospinning. Ceram. Int. 45(3), 3313–3324 (2019)

    CAS  Google Scholar 

  51. H. Yang, Y. Su, C. Shen, T. Yang, H. Gao, Synthesis and magnetic properties of ε-cobalt nanoparticles. Surf. Interface Anal. 36(2), 155–160 (2004)

    CAS  Google Scholar 

  52. L. Hu, Z. Kang, Enhanced flexible polypropylene fabric with silver/magnetic carbon nanotubes coatings for electromagnetic interference shielding. Appl. Surf. Sci. 568, 150845 (2021)

    CAS  Google Scholar 

  53. S. Ganguly, P. Bhawal, R. Ravindren, N.C. Das, Polymer nanocomposites for electromagnetic interference shielding: a review. J. Nanosci. Nanotechnol. 18(11), 7641–7669 (2018)

    CAS  Google Scholar 

  54. H. Zhao, L. Hou, S. Bi, Y. Lu, Enhanced X-band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt–nickel coatings. ACS Appl. Mater. Interfaces 9(38), 33059–33070 (2017)

    CAS  Google Scholar 

  55. H. Liang, L. Zhang, H. Wu, Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber. Small 18(38), 2203620 (2022)

    CAS  Google Scholar 

  56. H. Liang et al., Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Func. Mater. 33(7), 2212604 (2023)

    CAS  Google Scholar 

  57. Y. Zhou, Z. Sun, L. Jiang, S. Chen, J. Ma, F. Zhou, Flexible and conductive meta-aramid fiber paper with high thermal and chemical stability for electromagnetic interference shielding. Appl. Surf. Sci. 533, 147431 (2020)

    CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HM: Investigation, Writing—Original draft preparation, Methodology, Validation. KN: Conceptualization, Supervision, Writing—review and editing, Funding acquisition, Resources. GA: Supervision, Funding acquisition, Writing—review and editing.

Corresponding author

Correspondence to Komeil Nasouri.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, H., Nasouri, K. & Askari, G. Effect of morphology and microstructure of NiCo nanoparticles on the electromagnetic shielding behavior of flexible and durable NiCo-coated carbon fibers. J Mater Sci: Mater Electron 35, 89 (2024). https://doi.org/10.1007/s10854-023-11878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11878-6

Navigation