Skip to main content
Log in

Photocatalytic activity of indium doped zinc oxide seed layers and one dimensional nanorods under solar irradiation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the deposition of indium doped zinc oxide thin films at various substrate temperatures 350 °C, 400 °C and 450 °C by spray pyrolysis technique. In: ZnO 1D nanorods are grown on these thin film seed layers by aqueous chemical growth process. The scanning electron microscopy and atomic force microscopy indicate that the surface morphology of the seed layers consists of nanopyramids of size in the range 123–380 nm. The growth of 1D nanorods is confirmed by FESEM. The structural, morphological, optical and electrical properties of the seed layers and nanorods are studied in detail. Enhanced visible luminescence has been observed for the 1D nanorods grown on the seed layers, eventhough the seed layers showed quenched emission characteristics. Photocatalytic activity of seed layers and nanorods grown at 450 °C are studied, and a degradation efficiency of 90% and 70% against methylene blue and methyl orange dyes respectively, are observed for the 1D nanorods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. T.W. Hartley, Public perception and participation in water reuse. Desalination (2006). https://doi.org/10.1016/j.desal.2005.04.072

    Article  Google Scholar 

  2. J.H. He, S. Te Ho, T.B. Wu, L.J. Chen, Z.L. Wang, Electrical and photoelectrical performances of nano-photodiode based on ZnO nanowires. Chem. Phys. Lett. (2007). https://doi.org/10.1016/j.cplett.2006.12.061

    Article  Google Scholar 

  3. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. (2005). https://doi.org/10.1038/nmat1387

    Article  Google Scholar 

  4. N.H. Alvi, M. Willander, O. Nur, The effect of the post-growth annealing on the electroluminescence properties of -ZnO nanorods/-GaN light emitting diodes. Superlattices Microstruct. (2010). https://doi.org/10.1016/j.spmi.2010.03.002

    Article  Google Scholar 

  5. G. Torres Delgado, C.I. Zúñiga Romero, S.A. Mayén Hernández, R. Castanedo Pérez, O. Zelaya Angel, Optical and structural properties of the sol–gel-prepared ZnO thin films and their effect on the photocatalytic activity. Sol. Energy Mater. Sol. Cells (2009). https://doi.org/10.1016/j.solmat.2008.03.020

    Article  Google Scholar 

  6. M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. (2013). https://doi.org/10.1016/j.cap.2012.11.008

    Article  Google Scholar 

  7. F.D. Paraguay, J. Morales, W.L. Estrada, E. Andrade, M. Miki-Yoshida, Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis. Thin Solid Films 366, 16 (2000). https://doi.org/10.1016/S0040-6090(00)00752-5

    Article  Google Scholar 

  8. T. Sakai, I. Nakano, M. Shimo, N. Takamori, A. Takahashi, Thermal direct mastering using deep UV laser. Jpn. J. Appl. Phys. (2006). https://doi.org/10.1143/JJAP.45.1407

    Article  Google Scholar 

  9. J.B. Baxter, A.M. Walker, K. van Ommering, E.S. Aydil, Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology (2006). https://doi.org/10.1088/0957-4484/17/11/S13

    Article  Google Scholar 

  10. R. Amiruddin, M.C. Santhosh Kumar, High-speed photoresponse properties of ultraviolet (UV) photodiodes using vertically aligned Al:ZnO nanowires. Phys. Status Solidi 214, 1600658 (2017). https://doi.org/10.1002/pssa.201600658

    Article  CAS  Google Scholar 

  11. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. (2003). https://doi.org/10.1002/adma.200390108

    Article  Google Scholar 

  12. P.S. Patil, Versatility of chemical spray pyrolysis technique. Mater. Chem. Phys. (1999). https://doi.org/10.1016/S0254-0584(99)00049-8

    Article  Google Scholar 

  13. F. Ynineb, N. Attaf, M.S. Aida, J. Bougdira, Y. Bouznit, H. Rinnert, Morphological and optoelectrical study of ZnO:In/p-Si heterojunction prepared by ultrasonic spray pyrolysis. Thin Solid Films 628, 36–42 (2017). https://doi.org/10.1016/j.tsf.2017.02.044

    Article  CAS  Google Scholar 

  14. M. Eslamian, Spray-on thin film PV solar cells: advances potentials and challenges. Coatings 4, 60–84 (2014). https://doi.org/10.3390/coatings4010060

    Article  CAS  Google Scholar 

  15. M. Ghosh, D. Karmakar, S. Basu, S.N. Jha, D. Bhattacharyya, S.C. Gadkari, S.K. Gupta, Effect of size and aspect ratio on structural parameters and evidence of shape transition in zinc oxide nanostructures. J. Phys. Chem. Solids 75, 543–549 (2014). https://doi.org/10.1016/j.jpcs.2013.11.007

    Article  CAS  Google Scholar 

  16. J.L. Cervantes-López, R. Rangel, M. García-Méndez, H. Tiznado, O. Contreras, P. Quintana, P. Bartolo-Pérez, J.J. Alvarado-Gil, Indium-doped ZnO nanorods grown on Si (1 1 1) using a hybrid ALD-solvothermal method. Mater. Res. Express. (2017). https://doi.org/10.1088/2053-1591/aa7650

    Article  Google Scholar 

  17. D. Raoufi, Synthesis and photoluminescence characterization of ZnO nanoparticles. J. Lumin. (2013). https://doi.org/10.1016/j.jlumin.2012.08.045

    Article  Google Scholar 

  18. R. Amiruddin, M.C.S. Kumar, Epitaxial growth of vertically aligned highly conducting ZnO nanowires by modified aqueous chemical growth process. Ceram. Int. 40, 11283–11290 (2014). https://doi.org/10.1016/j.ceramint.2014.03.154

    Article  CAS  Google Scholar 

  19. D. Mahesh, B.H. Kumar, M.C.S. Kumar, Enhanced luminescence property of 1D nanorods realised by aqueous chemical growth on indium doped zinc oxide thin films. Thin Solid Films 686, 137279 (2019). https://doi.org/10.1016/j.tsf.2019.04.054

    Article  CAS  Google Scholar 

  20. K.G. Saw, N.M. Aznan, F.K. Yam, S.S. Ng, S.Y. Pung, New insights on the burstein moss shift and band gap narrowing in indium-doped zinc oxide thin film. PLoS ONE 10, e0141180 (2015). https://doi.org/10.1371/journal.pone.0141180

    Article  CAS  Google Scholar 

  21. C.E. Benouis, M. Benhaliliba, A. Sanchez Juarez, M.S. Aida, F. Chami, F. Yakuphanoglu, The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films. J. Alloys Compd. 490, 62–67 (2010). https://doi.org/10.1016/j.jallcom.2009.10.098

    Article  CAS  Google Scholar 

  22. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (1966). https://doi.org/10.1002/pssb.19660150224

    Article  Google Scholar 

  23. A. Sarkar, S. Ghosh, S. Chaudhuri, A.K. Pal, Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films. Thin Solid Films 204, 255–264 (1991). https://doi.org/10.1016/0040-6090(91)90067-8

    Article  CAS  Google Scholar 

  24. S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Electrical conductivity, optical and structural properties of indium-doped ZnO nanofiber thin film deposited by spray pyrolysis method. Phys. E Low-Dimensional Syst. Nanostruct. 35, 131–138 (2006). https://doi.org/10.1016/j.physe.2006.07.009

    Article  CAS  Google Scholar 

  25. M. Caglar, Y. Caglar, S. Ilican, Electrical and optical properties of undoped and In-doped ZnO thin films. Phys. Status Solidi (2007). https://doi.org/10.1002/pssc.200673744

    Article  Google Scholar 

  26. I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In 2 O 3 films: basic optical properties and applications to energy-efficient windows. J. Appl. Phys. (1986). https://doi.org/10.1063/1.337534

    Article  Google Scholar 

  27. L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov, Q.K. Xue, X. Du, Oxygen vacancies: the origin of n -type conductivity in ZnO. Phys. Rev. B (2016). https://doi.org/10.1103/PhysRevB.93.235305

    Article  Google Scholar 

  28. M.D. McCluskey, S.J. Jokela, Sources of n-type conductivity in ZnO. Phys. B Condens. Matter. (2007). https://doi.org/10.1016/j.physb.2007.08.186

    Article  Google Scholar 

  29. G. Juárez-Diaz, J. Martínez, M.L. García-Cruz, R. Peña-Sierra, J.A. García, M. Pacio, Hall effect and conductivity in zinc oxide (ZnO) doped by thermal diffusion of indium and copper. Phys. Status Solidi (2010). https://doi.org/10.1002/pssc.200982851

    Article  Google Scholar 

  30. S. Surthi, S. Kotru, R. Pandey, Low-voltage varistors based on La–Ca–Mn–O ceramics. Mater. Lett. (2002). https://doi.org/10.1016/S0167-577X(02)00890-X

    Article  Google Scholar 

  31. T. Prasada Rao, M.C. Santhosh Kumar, A. Safarulla, V. Ganesan, S.R. Barman, C. Sanjeeviraja, Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis. Phys. B Condens. Matter. 405, 2226–2231 (2010). https://doi.org/10.1016/j.physb.2010.02.016

    Article  CAS  Google Scholar 

  32. P. Xu, S. Chaoshu, Electronic structure of ZnO and its defects. Sci China Math 44(9), 1174–1181 (2001)

    Article  CAS  Google Scholar 

  33. M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials. (2010). https://doi.org/10.3390/ma3042643

    Article  Google Scholar 

  34. F. Leiter, H. Alves, D. Pfisterer, N.G. Romanov, D.M. Hofmann, B.K. Meyer, Oxygen vacancies in ZnO. Phys. B Condens. Matter. (2003). https://doi.org/10.1016/j.physb.2003.09.031

    Article  Google Scholar 

  35. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. (2001). https://doi.org/10.1063/1.1394173

    Article  Google Scholar 

  36. A.B. Djurišić, Y.H. Leung, Optical properties of ZnO nanostructures. Small (2006). https://doi.org/10.1002/smll.200600134

    Article  Google Scholar 

  37. K.U. Sim, S.W. Shin, A.V. Moholkar, J.H. Yun, J.H. Moon, J.H. Kim, Effects of dopant (Al, Ga, and In) on the characteristics of ZnO thin films prepared by RF magnetron sputtering system. Curr. Appl. Phys. (2010). https://doi.org/10.1016/j.cap.2010.02.028

    Article  Google Scholar 

  38. D. Mahesh, M.C.S. Kumar, Synergetic effects of aluminium and indium dopants in the physical properties of ZnO thin films via spray pyrolysis. Superlattices Microstruct. 142, 106511 (2020). https://doi.org/10.1016/j.spmi.2020.106511

    Article  CAS  Google Scholar 

  39. M.A. Reshchikov, V. Avrutin, N. Izyumskaya, R. Shimada, H. Morkoç, Anomalous shifts of blue and yellow luminescence bands in MBE-grown ZnO films. Phys. B Condens. Matter. (2007). https://doi.org/10.1016/j.physb.2007.08.191

    Article  Google Scholar 

  40. B. Jin, S. Im, S. Lee, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films (2000). https://doi.org/10.1016/S0040-6090(00)00746-X

    Article  Google Scholar 

  41. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett. (1996). https://doi.org/10.1063/1.116699

    Article  Google Scholar 

  42. H.J. Egelhaaf, D. Oelkrug, Luminescence and nonradiative deactivation of excited states involving oxygen defect centers in polycrystalline ZnO, in Selected topics in group IV and II–VI semiconductors. (Elsevier, 1996). https://doi.org/10.1016/B978-0-444-82411-0.50122-4

    Chapter  Google Scholar 

  43. A.G. Acedo-Mendoza, A. Infantes-Molina, D. Vargas-Hernández, C.A. Chávez-Sánchez, E. Rodríguez-Castellón, J.C. Tánori-Córdova, Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts: the effect of copper loading and reaction temperature. Mater. Sci. Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2020.105257

    Article  Google Scholar 

  44. W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, Synthesis and temperature-dependent near-band-edge emission of chain-like Mg-doped ZnO nanoparticles. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2182010

    Article  Google Scholar 

  45. M.A. Rauf, S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. (2009). https://doi.org/10.1016/j.cej.2009.02.026

    Article  Google Scholar 

  46. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells (2006). https://doi.org/10.1016/j.solmat.2005.11.007

    Article  Google Scholar 

  47. C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018). https://doi.org/10.1016/j.rser.2017.08.020

    Article  CAS  Google Scholar 

  48. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. (1995). https://doi.org/10.1021/cr00033a004

    Article  Google Scholar 

  49. X. Hu, G. Li, J.C. Yu, Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir (2010). https://doi.org/10.1021/la902142b

    Article  Google Scholar 

  50. S. Ben Ameur, H. BelHadjltaief, B. Duponchel, G. Leroy, M. Amlouk, H. Guermazi, S. Guermazi, Enhanced photocatalytic activity against crystal violet dye of Co and In doped ZnO thin films grown on PEI flexible substrate under UV and sunlight irradiations. Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e01912

    Article  Google Scholar 

  51. L.V. Trandafilović, D.J. Jovanović, X. Zhang, S. Ptasińska, M.D. Dramićanin, Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO: Eu nanoparticles. Appl. Catal. B Environ. 203, 740–752 (2017). https://doi.org/10.1016/j.apcatb.2016.10.063

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge INUP-IISc since this research (or a portion thereof) was performed using facilities at CeNSE, funded by Ministry of Electronics and Information Technology (MeitY), Govt. of India, and located at IISc, Bengaluru. Author Devika M is thankful to the MoE, Govt. India, for the research fellowship.

Funding

No funding received for this research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MCSK, DM; Methodology: MCSK, DM; Formal analysis and investigation: DM, JP; Writing—original draft preparation: DM, JP; Supervision: MCSK.

Corresponding author

Correspondence to M. C. Santhosh Kumar.

Ethics declarations

Competing interests

The authors declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, D., Paul, J. & Kumar, M.C.S. Photocatalytic activity of indium doped zinc oxide seed layers and one dimensional nanorods under solar irradiation. J Mater Sci: Mater Electron 35, 86 (2024). https://doi.org/10.1007/s10854-023-11864-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11864-y

Navigation