Skip to main content
Log in

A study of exchange bias effect in Fe3O4/MnO core–shell hetero-nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Spinel ferrite-based core–shell hetero nanostructures have received a lot of attention in a variety of applications including the development of gas sensors, memory devices, biomedicine, photo catalysts, and electrodes. In this work, we reported Fe3O4/MnO core–shell hetero-nanostructure using a simple one-step hydrothermal process. The Field emission scanning electron microscope and X-ray photoelectron spectroscopy analysis indicate the morphology and oxidation states of Fe, Mn, and O present in nanomaterial with an average cluster size of ⁓580 nm. The results of the bulk magnetic measurements of the prepared core–shell hetero-nanostructure indicate the ferrimagnetic behavior at low temperatures with a blocking temperature of ~ 64 K. The interfacial coupling of synthesized heterostructure was evaluated by the observation of the exchange bias effect under field-cooled protocols, which was demonstrated by a large shifting in magnetization in favor of the positive/negative applied field axis relative to the zero field-cooled magnetization curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data can be made available upon reasonable request.

References

  1. Y. Jun, J. Choi, J. Cheon, Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem. Commun. 12, 1203–1214 (2007). https://doi.org/10.1039/B614735F

    Article  Google Scholar 

  2. D. Tsamos, A. Krestou, M. Papagiannaki, S. Maropoulos, An overview of the production of magnetic core–shell nanoparticles and their biomedical applications. Metals (Basel) 12(4), 605 (2022). https://doi.org/10.3390/met12040605

    Article  CAS  Google Scholar 

  3. E. Christodoulou et al., Paclitaxel magnetic core-shell nanoparticles based on poly(lactic acid) semitelechelic novel block copolymers for combined hyperthermia and chemotherapy treatment of cancer. Pharmaceutics 11(5), 213 (2019). https://doi.org/10.3390/pharmaceutics11050213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ò. Iglesias, A. Labarta, X. Batlle, Exchange bias phenomenology and models of core/shell nanoparticles. J. Nanosci. Nanotechnol. 8(6), 2761–2780 (2008). https://doi.org/10.1166/jnn.2008.18306

    Article  CAS  PubMed  Google Scholar 

  5. R.L. Stamps, Mechanisms for exchange bias. J. Phys. D Appl. Phys. 33(23), R247–R268 (2000). https://doi.org/10.1088/0022-3727/33/23/201

    Article  ADS  CAS  Google Scholar 

  6. M.-H. Phan et al., Exchange bias effects in iron oxide-based nanoparticle systems. Nanomaterials 6(11), 221 (2016). https://doi.org/10.3390/nano6110221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. Gierlings, M.J. Prandolini, H. Fritzsche, M. Gruyters, D. Riegel, Change and asymmetry of magnetization reversal for a Co/CoO exchange-bias system. Phys. Rev. B 65(9), 092407 (2002). https://doi.org/10.1103/PhysRevB.65.092407

    Article  ADS  CAS  Google Scholar 

  8. W.H. Meiklejohn, C.P. Bean, New magnetic anisotropy. Phys. Rev. 102(5), 1413–1414 (1956). https://doi.org/10.1103/PhysRev.102.1413

    Article  ADS  Google Scholar 

  9. Y. Hu et al., Monte Carlo simulation of exchange bias and training effects in ferromagnetic/antiferromagnetic bilayers with different Néel temperatures. Thin Solid Films 550, 608–615 (2014). https://doi.org/10.1016/j.tsf.2013.10.179

    Article  ADS  CAS  Google Scholar 

  10. Ò. Iglesias, A. Labarta, Monte Carlo simulation study of exchange biased hysteresis loops in nanoparticles. Phys. B Condens. Matter. 372(1–2), 247–250 (2006). https://doi.org/10.1016/j.physb.2005.10.059

    Article  ADS  CAS  Google Scholar 

  11. A.E. Berkowitz et al., Monodispersed MnO nanoparticles with epitaxial Mn3O4 shells. J. Phys. D Appl. Phys. 41(13), 134007 (2008). https://doi.org/10.1088/0022-3727/41/13/134007

    Article  ADS  CAS  Google Scholar 

  12. D.W. Kavich, J.H. Dickerson, S.V. Mahajan, S.A. Hasan, J.-H. Park, Exchange bias of singly inverted FeO/Fe3O4 core-shell nanocrystals. Phys. Rev. B 78(17), 174414 (2008)

    Article  ADS  Google Scholar 

  13. E. Lima et al., Bimagnetic CoO core/CoFe2O4 shell nanoparticles: synthesis and magnetic properties. Chem. Mater. 24(3), 512–516 (2012). https://doi.org/10.1021/cm2028959

    Article  CAS  Google Scholar 

  14. S.M. Yusuf, P.K. Manna, M.M. Shirolkar, S.K. Kulkarni, R. Tewari, G.K. Dey, A study of exchange bias in BiFeO3 core/NiFe2O4 shell nanoparticles. J. Appl. Phys. (2013). https://doi.org/10.1063/1.4803549

    Article  Google Scholar 

  15. T. Yu et al., Exchange bias coupling in NiO/Ni bilayer tubular nanostructures synthetized by electrodeposition and thermal oxidation. J. Magn. Magn. Mater. 429, 74–78 (2017). https://doi.org/10.1016/j.jmmm.2016.12.136

    Article  ADS  CAS  Google Scholar 

  16. J.B. Tracy, D.N. Weiss, D.P. Dinega, M.G. Bawendi, Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles. Phys. Rev. B 72(6), 064404 (2005). https://doi.org/10.1103/PhysRevB.72.064404

    Article  ADS  CAS  Google Scholar 

  17. R.K. Zheng, G.H. Wen, K.K. Fung, X.X. Zhang, Training effect of exchange bias in γ−Fe2O3 coated Fe nanoparticles. Phys. Rev. B 69(21), 214431 (2004)

    Article  ADS  Google Scholar 

  18. S. Panda, M.K. Das, N. Mohapatra, Role of interfacial layer on exchange-coupled magnetic properties of bi-magnetic nanostructures: an experimental and theoretical approach. J. Magn. Magn. Mater. (2023). https://doi.org/10.1016/j.jmmm.2023.171306

    Article  Google Scholar 

  19. K. O’Grady, L.E. Fernandez-Outon, G. Vallejo-Fernandez, A new paradigm for exchange bias in polycrystalline thin films. J. Magn. Magn. Mater. 322(8), 883–899 (2010). https://doi.org/10.1016/j.jmmm.2009.12.011

    Article  ADS  CAS  Google Scholar 

  20. S. Chandra, H. Khurshid, W. Li, G.C. Hadjipanayis, M.H. Phan, H. Srikanth, Spin dynamics and criteria for onset of exchange bias in superspin glass Fe/γ-Fe2O3 core-shell nanoparticles. Phys. Rev. B 86(1), 14426 (2012)

    Article  ADS  Google Scholar 

  21. Q.K. Ong, X.-M. Lin, A. Wei, Role of frozen spins in the exchange anisotropy of core−shell Fe@Fe3O4 nanoparticles. J. Phys. Chem. C 115(6), 2665–2672 (2011). https://doi.org/10.1021/jp110716g

    Article  CAS  Google Scholar 

  22. X. Sun, N. Frey Huls, A. Sigdel, S. Sun, Tuning exchange bias in core/shell FeO/Fe3O4 nanoparticles. Nano Lett. (2012). https://doi.org/10.1021/nl2034514

    Article  PubMed  PubMed Central  Google Scholar 

  23. H. Khurshid et al., Mechanism and controlled growth of shape and size variant core/shell FeO/Fe3O4 nanoparticles. Nanoscale 5(17), 7942 (2013). https://doi.org/10.1039/c3nr02596a

    Article  ADS  CAS  PubMed  Google Scholar 

  24. I. Panagiotopoulos et al., Synthesis and exchange bias in γ-Fe2O3/CoO and reverse CoO/γ-Fe2O3 binary nanoparticles. J. Phys. Chem. C 113(33), 14609–14614 (2009). https://doi.org/10.1021/jp8085446

    Article  CAS  Google Scholar 

  25. H. Khurshid, M.-H. Phan, P. Mukherjee, H. Srikanth, Tuning exchange bias in Fe/γ-Fe2O3 core-shell nanoparticles: Impacts of interface and surface spins. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4865904

    Article  Google Scholar 

  26. M.I. Bodnarchuk et al., Exchange-coupled bimagnetic wüstite/metal ferrite core/shell nanocrystals: size, shape, and compositional control. Small 5(20), 2247–2252 (2009). https://doi.org/10.1002/smll.200900635

    Article  CAS  PubMed  Google Scholar 

  27. O. Masala, R. Seshadri, Spinel ferrite/MnO core/shell nanoparticles: chemical synthesis of all-oxide exchange biased architectures. J. Am. Chem. Soc. 127(26), 9354–9355 (2005). https://doi.org/10.1021/ja051244s

    Article  CAS  PubMed  Google Scholar 

  28. R.D. Rutledge et al., Formation of FePt nanoparticles having high coercivity. J. Am. Chem. Soc. 128(44), 14210–14211 (2006). https://doi.org/10.1021/ja0633868

    Article  CAS  PubMed  Google Scholar 

  29. N. Song et al., Well-controlled exchange bias effect in MnO@Mn3O4 core-shell nanoparticles with an inverted coupling structures. AIP Adv. (2017). https://doi.org/10.1063/1.4979919

    Article  Google Scholar 

  30. F.G. Silva et al., The role of magnetic interactions in exchange bias properties of MnFe2O4 @ γ-Fe2O3 core/shell nanoparticles. J. Phys. D Appl. Phys. 46(28), 285003 (2013). https://doi.org/10.1088/0022-3727/46/28/285003

    Article  CAS  Google Scholar 

  31. F. Qu, Y. Wang, J. Liu, S. Wen, Y. Chen, S. Ruan, Fe3O4–NiO core–shell composites: Hydrothermal synthesis and toluene sensing properties. Mater. Lett. 132, 167–170 (2014). https://doi.org/10.1016/j.matlet.2014.06.060

    Article  CAS  Google Scholar 

  32. Z.-J. Jiang, S. Cheng, H. Rong, Z. Jiang, J. Huang, General synthesis of MFe2O4/carbon (M = Zn, Mn Co, Ni) spindles from mixed metal organic frameworks as high performance anodes for lithium ion batteries. J. Mater. Chem. A 5(45), 23641–23650 (2017). https://doi.org/10.1039/C7TA07097G

    Article  CAS  Google Scholar 

  33. C. Tan et al., Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate. J. Hazard. Mater. 276, 452–460 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.068

    Article  CAS  PubMed  Google Scholar 

  34. A. Rajan, M. Sharma, N.K. Sahu, Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe3O4 nanoparticles for hyperthermia. Sci. Rep. 10(1), 15045 (2020). https://doi.org/10.1038/s41598-020-71703-6

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. M. Li et al., High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities. Nanoscale 10(34), 15926–15931 (2018). https://doi.org/10.1039/C8NR04541K

    Article  CAS  PubMed  Google Scholar 

  36. C. Li, Z. Yu, H. Liu, L. Kong, Dandelion-like α-MnO2 hollow spheres with superior catalytic performance for Li-O2 batteries by a facile in situ pyrolysis. J. Mater. Sci. 53(20), 14525–14535 (2018). https://doi.org/10.1007/s10853-018-2629-1

    Article  ADS  CAS  Google Scholar 

  37. P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

    Article  CAS  PubMed  Google Scholar 

  38. S. Tekin, I. Karaduman Er, The structural, morphological, optical and gas-sensing properties of Mn3O4 thin films grown by successive ionic layer adsorption and reaction technique. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08372-w

    Article  Google Scholar 

  39. A. Radoń, A. Drygała, Ł Hawełek, D. Łukowiec, Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers. Mater Charact 131, 148–156 (2017). https://doi.org/10.1016/j.matchar.2017.06.034

    Article  CAS  Google Scholar 

  40. A. Sadollahkhani et al., A detailed optical investigation of ZnO@ZnS core–shell nanoparticles and their photocatalytic activity at different pH values. Ceram. Int. 41(5), 7174–7184 (2015). https://doi.org/10.1016/j.ceramint.2015.02.040

    Article  CAS  Google Scholar 

  41. K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, W.-F. Hsieh, Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem. Phys. Lett. 409(4–6), 208–211 (2005). https://doi.org/10.1016/j.cplett.2005.05.027

    Article  ADS  CAS  Google Scholar 

  42. S. Chaturvedi, R. Das, P. Poddar, S. Kulkarni, Tunable band gap and coercivity of bismuth ferrite–polyaniline core–shell nanoparticles: the role of shell thickness. RSC Adv. 5(30), 23563–23568 (2015). https://doi.org/10.1039/C5RA00933B

    Article  ADS  CAS  Google Scholar 

  43. X. Chen, Y. Lou, A.C. Samia, C. Burda, Coherency strain effects on the optical response of core/shell heteronanostructures. Nano Lett. 3(6), 799–803 (2003). https://doi.org/10.1021/nl034243b

    Article  ADS  CAS  Google Scholar 

  44. A. Omelianchik et al., From Mn3O4/MnO core–shell nanoparticles to hollow MnO: evolution of magnetic properties. Nanotechnology 29(5), 055703 (2018). https://doi.org/10.1088/1361-6528/aa9e59

    Article  ADS  CAS  PubMed  Google Scholar 

  45. A. López-Ortega et al., Size-dependent passivation shell and magnetic properties in antiferromagnetic/ferrimagnetic core/shell MnO nanoparticles. J. Am. Chem. Soc. 132(27), 9398–9407 (2010). https://doi.org/10.1021/ja1021798

    Article  CAS  PubMed  Google Scholar 

  46. W.S. Seo, H.H. Jo, K. Lee, B. Kim, S.J. Oh, J.T. Park, Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chemie Int. Ed. 43(9), 1115–1117 (2004). https://doi.org/10.1002/anie.200352400

    Article  CAS  Google Scholar 

  47. P. Granitzer et al., Magnetic study of Fe[sub 3]O[sub 4] nanoparticles incorporated within mesoporous silicon. J. Electrochem. Soc. 157(7), K145 (2010). https://doi.org/10.1149/1.3425605

    Article  CAS  Google Scholar 

  48. K. Bhattacharjee, S.P. Pati, G.C. Das, D. Das, K.K. Chattopadhyay, Effect of particle size distribution on the structure, hyperfine, and magnetic properties of Ni05Zn05Fe2O4 nanopowders. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4904518

    Article  Google Scholar 

  49. S. Luo et al., Facile and fast synthesis of urchin-shaped Fe3O4@Bi2S3 core-shell hierarchical structures and their magnetically recyclable photocatalytic activity. J. Mater. Chem. 22(11), 4832 (2012). https://doi.org/10.1039/c2jm16476k

    Article  CAS  Google Scholar 

  50. W. Baaziz et al., Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J. Phys. Chem. C 118(7), 3795–3810 (2014). https://doi.org/10.1021/jp411481p

    Article  CAS  Google Scholar 

  51. C. Liu, J. Cui, X. He, H. Shi, Large exchange bias with remarkable thermostability in an inverted quasi core/shell CoO/γ-Fe2O3 granular system. J. Nanoparticle Res. 16(3), 2320 (2014). https://doi.org/10.1007/s11051-014-2320-7

    Article  ADS  CAS  Google Scholar 

  52. G. Salazar-Alvarez, J. Sort, S. Suriñach, M.D. Baró, J. Nogués, Synthesis and size-dependent exchange bias in inverted core−shell MnO|Mn3O4 nanoparticles. J. Am. Chem. Soc. 129(29), 9102–9108 (2007). https://doi.org/10.1021/ja0714282

    Article  CAS  PubMed  Google Scholar 

  53. Z. Swiatkowska-Warkocka, K. Kawaguchi, H. Wang, Y. Katou, N. Koshizaki, Controlling exchange bias in Fe3O4/FeO composite particles prepared by pulsed laser irradiation. Nanoscale Res. Lett. 6(1), 226 (2011). https://doi.org/10.1186/1556-276X-6-226

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. G. Tiwari, C.P. Vinod, B.R. Jagirdar, Controlled exchange bias behavior of manganese nanoparticles. J. Magn. Magn. Mater. 559, 169504 (2022). https://doi.org/10.1016/j.jmmm.2022.169504

    Article  CAS  Google Scholar 

  55. H. Khurshid, W. Li, M.-H. Phan, P. Mukherjee, G.C. Hadjipanayis, H. Srikanth, Surface spin disorder and exchange-bias in hollow maghemite nanoparticles. Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4733621

    Article  Google Scholar 

  56. S. Chandra et al., Exchange bias effect in Au-Fe3O4 nanocomposites. Nanotechnology 25(5), 055702 (2014). https://doi.org/10.1088/0957-4484/25/5/055702

    Article  ADS  CAS  PubMed  Google Scholar 

  57. C.M. Zhu, L.G. Wang, F.C. Liu, W.J. Kong, Exchange bias behaviors up to room temperature in NiCo2O4/NiO nanoparticle system. Ceram. Int. 45(8), 9878–9883 (2019). https://doi.org/10.1016/j.ceramint.2019.02.028

    Article  CAS  Google Scholar 

  58. X. He et al., Large exchange bias and enhanced coercivity in strongly-coupled Ni/NiO binary nanoparticles. RSC Adv. 9(52), 30195–30206 (2019). https://doi.org/10.1039/C9RA03242H

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. L.D. Bianco, D. Fiorani, A.M. Testa, E. Bonetti, Exchange bias in the nanogranular Fe/feoxide system. J. Magn. Magn. Mater. 290–291, 102–105 (2005). https://doi.org/10.1016/j.jmmm.2004.11.222

    Article  ADS  CAS  Google Scholar 

  60. M. Thakur, M. Patra, S. Majumdar, S. Giri, Influence of cooling field on the magnetic properties of Ni/NiO nanostructure. J. Alloys Compd. 480(2), 193–197 (2009). https://doi.org/10.1016/j.jallcom.2009.01.128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the Department of Science and Technology (DST) India, and the University Grant Commission (UGC) for their collaborative work and financial support. S.K. also thanks IIT Guwahati for the X-ray photo electron spectroscopy (XPS) measurements.

Funding

SK thanks the UGC grant. NM appreciates the support of the SERB CRG programme. This work is partially supported by CRG/2019/004056.

Author information

Authors and Affiliations

Authors

Contributions

SK and NM were involved in the planning and design of the experimental work. SK prepared the samples, collected the data, and SP performed the magnetic measurement.

Corresponding authors

Correspondence to Subodh Khamari or Niharika Mohapatra.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamari, S., Panda, S. & Mohapatra, N. A study of exchange bias effect in Fe3O4/MnO core–shell hetero-nanostructures. J Mater Sci: Mater Electron 35, 286 (2024). https://doi.org/10.1007/s10854-023-11860-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11860-2

Navigation