Skip to main content
Log in

Design of a label-free biosensor based on dielectrically modulated GeSn heterojunction vertical TFET

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, a Label free biosensor based on dielectrically modulated GeSn heterojunction Vertical Tunnel Field-Effect transistor has been designed and analyzed. The performance of Label-free biosensor has been checked for the detection of several biological molecules viz. Protein, Uricase, Keratin and Gelatin. To perceive the biomolecules, a nano-gap cavity of 5 nm has been formed under the metal gate layer on the both sides. Due to the alteration in the device’s effective dielectric constant caused by the introduction of biomolecules, a considerable shift in different electrical metrics such as drain current, electric field, electron band-to-band tunneling (eBTBT) rate, threshold voltage, and drain current sensitivity have been detected. Further, sensitivity of the biosensor has been investigated for both neutral and charged biomolecules. Charged biomolecule with dielectric constant of K = 12 is studied for various positive and negative charge densities. Irregular/non-uniform hybridization contours such as: decreasing, increasing, concave and convex step contours are also evaluated for Gelatin (K = 12) biomolecule. The device’s sensing capability is assessed in terms of different DC performance metrics. For the Gelatin biomolecule at K = 12, the maximum ON-current and OFF-current for the biosensor are 6.85 × 10–5 A/µm and 3.99 × 10–16 A/µm respectively. The suggested biosensor yielded subthreshold swing and drain current sensitivity measurements of 24.45 mV/dec and 5.87 × 106 respectively. As the relative permittivity difference between the biomolecules is larger than the selectivity of the biomolecules will also be higher. Finally, the suggested biosensor device is benchmarked against other published research, and has been demonstrated to produce better sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14

Similar content being viewed by others

Data availability

No new data were created or analyzed in this study.

References

  1. S.P. Mohanty, E. Koucianos, IEEE Potentials 25(2), 35–40 (2006). https://doi.org/10.1109/MP.2006.1649009

    Article  Google Scholar 

  2. B.G. Andryukov, N.N. Besednova, R.V. Romashko, T.S. Zaporozhets, T.A. Efimov, Biosensors 10(2), 1–22 (2020). https://doi.org/10.3390/bios10020011

    Article  CAS  Google Scholar 

  3. D. Verma, K.R.B. Singh, A.K. Yadav, V. Nayak, J. Singh, P.R. Solanki, R.P. Singh, Biosens. Bioelectron. (2022). https://doi.org/10.1016/j.biosx.2022.100153

    Article  PubMed  Google Scholar 

  4. R. Hao, L. Lei, Y. Jiangyan, W. Lingli, L. Shengbin, Biosensors 13(4), 426 (2023). https://doi.org/10.3390/bios13040426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Jain, M. Nehra, R. Kumar, N. Dilbaghi, T.Y. Hu, S. Kumar, A. Kaushik, C.-Z. Li, Biosens. Bioelectron. 179, 113074 (2021). https://doi.org/10.1016/j.bios.2021.113074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. P. Bergveld, IEEE Trans. Biomed. Eng. 17(1), 70–71 (1970). https://doi.org/10.1109/TBME.1970.4502688

    Article  CAS  PubMed  Google Scholar 

  7. H. Im, X.-J. Huang, B. Gu, Y.-K. Choi, Nat. Nanotech. 27(2), 430–434 (2007). https://doi.org/10.1038/nnano.2007.180

    Article  ADS  CAS  Google Scholar 

  8. Encyclopaedia Britannica, Britannica Guide to Genetics (Encyclopaedia Britannica, Inc, Chicago, 2009)

    Google Scholar 

  9. D. Sarkar, K. Banerjee, Appl. Phys. Lett. 100, 14 (2012). https://doi.org/10.1063/1.3698093

    Article  CAS  Google Scholar 

  10. R. Narang, K.V.S. Reddy, M. Saxena, R.S. Gupta, M. Gupta, IEEE Trans. Electron Devices 59(10), 2809–2817 (2012). https://doi.org/10.1109/TED.2012.2208115

    Article  ADS  Google Scholar 

  11. B. Wang, W. Yang, J. McKittrick, M.A. Meyers, Prog. Mater. Sci. 76, 229–318 (2016). https://doi.org/10.1016/j.pmatsci.2015.06.001

    Article  CAS  Google Scholar 

  12. G. Wadhwa, B. Raj, IEEE Trans. Nanotechnol. 18, 567–574 (2019). https://doi.org/10.1109/TNANO.2019.2918192

    Article  ADS  CAS  Google Scholar 

  13. A. Bhattacharyya, D. De, M. Chanda, IEEE Trans. Nanotechnol. 21, 100–109 (2022). https://doi.org/10.1109/TNANO.2022.3148922

    Article  ADS  CAS  Google Scholar 

  14. K. Vanlalawmpuia, B. Bhowmick, IEEE Sens. J. 22(1), 939–947 (2022). https://doi.org/10.1109/JSEN.2021.3128473

    Article  ADS  CAS  Google Scholar 

  15. S. Kanungo, S. Chattopadhyay, P.S. Gupta, H. Rahaman, IEEE Trans. Electron Devices 62(3), 994–1001 (2015). https://doi.org/10.1109/TED.2015.2390774

    Article  ADS  Google Scholar 

  16. S. Singh, N.K. Singh, S. Singh, IEEE Trans. NanoBiosci. (2021). https://doi.org/10.1109/TNB.2021.3139345

    Article  Google Scholar 

  17. A. Anam, S. Anand, S.I. Amin, IEEE Sens. J. 20(22), 13178–13185 (2020). https://doi.org/10.1109/JSEN.2020.3004050

    Article  ADS  CAS  Google Scholar 

  18. M. Verma, S. Tirkey, S. Yadav, D. Sharma, D.S. Yadav, IEEE Trans. Electron Devices 64(9), 3841–3848 (2017). https://doi.org/10.1109/TED.2017.2732820

    Article  ADS  CAS  Google Scholar 

  19. S. Glass, K. Kato, L. Kibkalo, J.M. Hartmann, S. Takagi, D. Buca, S. Mantl, Z.Q. Tai, IEEE J. Electron Devices Soc. 6, 1070–1076 (2018)

    Article  CAS  Google Scholar 

  20. W.S. Hwang, C. Shen, X.P. Wang, D.S.H. Chan, B.J. Cho, IEEE Symposium on VLSI Technology, Kyoto (2007)

  21. R. Saha, Y. Hirpara, S. Hoque, IEEE Trans. Nanotechnol. 20, 552–560 (2021). https://doi.org/10.1109/TNANO.2021.3093927

    Article  ADS  CAS  Google Scholar 

  22. P. Kumari, S. Dash, G.P. Mishra, Adv. Nat. Sci. 6(4), 045005 (2015)

    Google Scholar 

  23. S. Mukhopadhyay, D. Sen, B. Goswami, S.K. Sarkar, IEEE Sens. J. 21(4), 4739–4746 (2021). https://doi.org/10.1109/JSEN.2020.3033576

    Article  ADS  CAS  Google Scholar 

  24. V.D. Wangkheirakpam, B. Bhowmick, P.D. Pukhrambam, IEEE Trans. Nanotechnol. 19, 156–162 (2020). https://doi.org/10.1109/TNANO.2020.2969206

    Article  ADS  CAS  Google Scholar 

  25. D.-Y. Jang, Y.-P. Kim, H.-S. Kim, S.-H.K. Park, S.-Y. Choi, Y.-K. Choi, J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 25(2), 443–447 (2007). https://doi.org/10.1116/1.2713403

    Article  ADS  CAS  Google Scholar 

  26. J.H. Kim, S. Kim, B.-G. Park, IEEE Trans. Electron Devices 66(4), 1656–1661 (2019). https://doi.org/10.1109/TED.2019.2899206

    Article  ADS  CAS  Google Scholar 

  27. H. Rm, X. Luo, Nanomanuf. Metrol 1(2), 67–81 (2018). https://doi.org/10.1007/s41871-018-0016-9

    Article  Google Scholar 

  28. I.C. Cherik, S. Mohammadi, IEEE Sens. J. 22(11), 10308–10314 (2022). https://doi.org/10.1109/JSEN.2022.3163475

    Article  ADS  CAS  Google Scholar 

  29. ATLAS device simulator software user manual. Silvaco Int, Santa Clara (2018)

  30. S.H. Kim, Z.A. Jacobson, T.K. Liu, IEEE Trans. Electron Devices 57(7), 1710–1713 (2010). https://doi.org/10.1109/TED.2010.2049215

    Article  ADS  CAS  Google Scholar 

  31. Y. Yang, K.L. Low, W. Wang, P. Guo, L. Wang, G. Han, Y.-C. Yeo, J. Appl. Phys. 113(19), 194507 (2013). https://doi.org/10.1063/1.4805051

    Article  ADS  CAS  Google Scholar 

  32. P.R. Nair, M.A. Alam, IEEE Trans. Electron Devices 54(12), 3400–3408 (2007). https://doi.org/10.1109/TED.2007.909059

    Article  ADS  CAS  Google Scholar 

  33. P. Dwivedi, R. Singh, B.S. Sengar, A. Kumar, V. Garg, IEEE Sens. J. 21(3), 3201–3209 (2021). https://doi.org/10.1109/JSEN.2020.3028153

    Article  ADS  CAS  Google Scholar 

  34. Í. Molina-Fernández, J. Leuermann, J. Alejandro Ortega-Moñux, G. Wangüemert-Pérez, R. Halir, Opt. Express 27(9), 12616–12629 (2019). https://doi.org/10.1364/OE.27.012616

    Article  ADS  PubMed  Google Scholar 

  35. N.K. Rajan, K. Brower, X. Duan, M.A. Reed, Appl. Phys. Lett. 104, 084106–084111 (2014). https://doi.org/10.1063/1.4867025

    Article  ADS  CAS  Google Scholar 

  36. V.D. Wangkheirakpam, B. Bhowmick, P.D. Pukhrambam, J. Mater. Sci. 33, 10323–10334 (2022). https://doi.org/10.1007/s10854-022-08020-3

    Article  CAS  Google Scholar 

  37. K. Baruah, S. Baishya, Microelectron. J. 133, 105717 (2023). https://doi.org/10.1016/j.mejo.2023.105717

    Article  CAS  Google Scholar 

  38. D. Manaswi, K. Srinivasa Rao, SILICON (2023). https://doi.org/10.1007/s12633-023-02402-w

    Article  Google Scholar 

  39. I.C. Cherik, S. Mohammadi, Sci. Rep. 13, 11495 (2023). https://doi.org/10.1038/s41598-023-38651-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M.Y. Iqbal, M.S. Alam, S. Anand, S.I. Amin, IEEE Trans. Nanotechnol. 21, 251–258 (2022). https://doi.org/10.1109/TNANO.2022.3178845

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds and no grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication. They further confirm that the order of authors listed in the manuscript has been approved by all of them.

Corresponding author

Correspondence to Tulika Chawla.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawla, T., Khosla, M. & Raj, B. Design of a label-free biosensor based on dielectrically modulated GeSn heterojunction vertical TFET. J Mater Sci: Mater Electron 35, 214 (2024). https://doi.org/10.1007/s10854-023-11843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11843-3

Navigation