Skip to main content
Log in

Superior energy-delay-production in nanoscale field effect diode by embedded doped pockets for digital applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Energy-Delay-Production (EDP) is one of the biggest issues in digital applications. This article describes a nanoscale field effect diode construction with superior EDP. The EDP refers to not only low OFF-state current and small gate capacitance but also to high ON-state current. The proposed device consists of embedded doped Pockets (EPs) in the drain and source regions at the channel's border and extended gates on these Pockets to increase the EDP performance in nano dimensions. Due to gate's work function engineering, the type of majority carriers in the EPs is the same as the source and drain carriers in the ON-state and different in the OFF-state. The main idea is to limit the injection of extra minority carriers from the drain and source sides into the OFF-state channel while eliminating the requirement for reservoirs to improve the electrical characteristics in nano dimensions. The results demonstrate that the energy-delay-production (EDP) and gate delay are decreased from 5.023 × 10−26 to 6.26 × 10−28 j.s and 114 to 0.58 ps compared to conventional structures, respectively. And also, the ON/OFF current ratio improved by 1000 times compared to conventional structures. In addition, the effect of the gate's work function and the doping densities of the EPs on the electrical properties of the suggested structure are examined in this work. As a result, when compared to conventional structures, the proposed structure can be a viable alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors, upon reasonable request.

References

  1. G.E. Moore, Electron Dev. Meet. 21, 11 (1975)

    Google Scholar 

  2. B. Yu, L. Wang, Y. Yuan, P.M. Asbeck, Y. Taur, IEEE Trans. Electron Dev. (2008). https://doi.org/10.1109/TED.2008.2005163

    Article  Google Scholar 

  3. G. Joshi, A. Choudhary, Int. J. Nanosci. (2011). https://doi.org/10.1142/S0219581X11007910

    Article  Google Scholar 

  4. A. Kranti, T.M. Chung, J.P. Raskin, Int. J. Nanosci. (2005). https://doi.org/10.1142/S0219581X05004005

    Article  Google Scholar 

  5. F. Raissi, IEEE Trans. Electron Dev. (1996). https://doi.org/10.1109/16.481742

    Article  Google Scholar 

  6. I. Sheikhian, F. Raissi, Electron. Lett. 39(4), 345 (2003)

    Article  Google Scholar 

  7. A. Rezaei, A.A. Orouji, Eur. Phys. J. Plus (2022). https://doi.org/10.1140/epjp/s13360-022-03264-8

    Article  Google Scholar 

  8. I. Sheikhian, IEEE Trans. Electron Dev. (2022). https://doi.org/10.1109/TED.2022.3188234

    Article  Google Scholar 

  9. S. Panneerselvam, T. Bhattacharjee, P.V. Chandramani, S. Raj, SILICON (2023). https://doi.org/10.1007/s12633-023-02703-0

    Article  Google Scholar 

  10. F. Sharafi, A.A. Orouji, M. Soroosh, IEEE Trans. Dev. Mater. Reliab. (2021). https://doi.org/10.1109/TDMR.2021.3102105

    Article  Google Scholar 

  11. A. Rezaei, A.A. Orouji, SILICON (2021). https://doi.org/10.1007/s12633-021-01201-5

    Article  Google Scholar 

  12. I. Sheikhian, F. Sharafi, I.E.T. Circuits, Dev. Syst. (2019). https://doi.org/10.1049/iet-cds.2018.5138

    Article  Google Scholar 

  13. M. Vadizadeh, Microelectron. J. (2018). https://doi.org/10.1016/j.mejo.2017.11.007

    Article  Google Scholar 

  14. S. Cao, A.A. Salman, J.H. Chun, S.G. Beebe, M.M. Pelella, R.W. Dutton, IEEE Trans. Electron Dev. (2010). https://doi.org/10.1109/TED.2009.2039524

    Article  Google Scholar 

  15. S. Cao, T.W. Chen, S.G. Beebe, R.W. Dutton, IEEE Custom Integr. Circuits Conf. (2009). https://doi.org/10.1109/TED.2009.2039524

    Article  Google Scholar 

  16. M. Amirmazlaghani, F. Raissi, IEICE Electron. Express (2009). https://doi.org/10.1587/elex.6.1582

    Article  Google Scholar 

  17. S. PanneerSelvam, S.K. Pal, P.V. Chandramani, S. Raj, Microelectron. Reliab. (2023). https://doi.org/10.1016/j.microrel.2023.114930

    Article  Google Scholar 

  18. A.Z. Badwan, Z. Chbili, Y. Yang, A.A. Salman, Q. Li, D.E. Ioannou, IEEE Electron Dev. Lett. (2013). https://doi.org/10.1109/LED.2013.2265552

    Article  Google Scholar 

  19. A.Z. Badwan, Z. Chbili, Q. Li, D.E. Ioannou, IEEE Trans. Electron Dev. (2015). https://doi.org/10.1109/TED.2015.2450693

    Article  Google Scholar 

  20. E. Mohammadi, N. Manavizadeh, Phys. Status Solidi C (2017). https://doi.org/10.1002/pssc.201700202

    Article  Google Scholar 

  21. E. Mohammadi, N. Manavizadeh, IEEE Sens. J. (2018). https://doi.org/10.1109/JSEN.2018.2881940

    Article  Google Scholar 

  22. F. Jazayeri, B. Forouzandeh, F. Raissi, IEICE Electron. Express (2009). https://doi.org/10.1587/elex.6.51

    Article  Google Scholar 

  23. F. Jazaeri, S. Soleimani-Amiri, B. Ebrahimi, B. Forouzandeh, H. R. Ahmadi, F. Raissi, 3rd International Design and Test Workshop. IEEE. 154 (2008)

  24. A. Rezaei, B. Azizollah-Ganji, M. Gholipour, J. Optoelectron. Nanostruct. 3, 2 (2018)

    Google Scholar 

  25. I. Sheikhian, F. Raissi, IEEE Trans. Electron Dev. (2007). https://doi.org/10.1109/TED.2006.890600

    Article  Google Scholar 

  26. N. Manavizadeh, F. Raissi, E.A. Soleimani, M. Pourfath, S. Selberherr, IEEE Trans. Electron Dev. (2011). https://doi.org/10.1109/TED.2011.2152844

    Article  Google Scholar 

  27. N. Manavizadeh, F. Raissi, E.A. Soleimani, M. Pourfath, Semicond. Sci. Technol. (2012). https://doi.org/10.1088/0268-1242/27/4/045011

    Article  Google Scholar 

  28. B.J. Touchaee, N. Manavizadeh, IEEE Trans. Electron Dev. (2015). https://doi.org/10.1109/TED.2015.2463099

    Article  Google Scholar 

  29. B.J. Touchaei, N. Manavizadeh, IEEE Trans. Electron Dev. (2017). https://doi.org/10.1109/TED.2016.2626342

    Article  Google Scholar 

  30. A. Rezaei, B. Azizollah-Ganji, M. Gholipour, I.E.T. Circuits, Dev. Syst. (2018). https://doi.org/10.1049/iet-cds.2018.5210

    Article  Google Scholar 

  31. S.A. Hashemi, P. Pourmolla, S. Jit, IEEE Trans. Electron Dev. (2019). https://doi.org/10.1109/TED.2019.2955638

    Article  Google Scholar 

  32. J. Robertson, R.M. Wallace, Mater. Sci. Eng. R. Rep. (2015). https://doi.org/10.1016/j.mser.2014.11.001

    Article  Google Scholar 

  33. W.P. Maszara, Proc. Mater. Res. Soc. Symp 59, 1 (2002)

    Google Scholar 

  34. J. P. Colinge, ed., (Springer, New York, 2008), p. 73

  35. International Device Simulation Software, SILVACO TCAD, 2015

  36. A. Sotoudeh, M. Amirmazlaghani, Superlattices Microstruct. (2018). https://doi.org/10.1016/j.spmi.2018.01.010

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

AR: Conceptualization, Writing—original draft, Software. AAO: Supervision—review & editing.

Corresponding author

Correspondence to Ali A. Orouji.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, A., Orouji, A.A. Superior energy-delay-production in nanoscale field effect diode by embedded doped pockets for digital applications. J Mater Sci: Mater Electron 35, 77 (2024). https://doi.org/10.1007/s10854-023-11836-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11836-2

Navigation