Skip to main content
Log in

Electrodeposition mode effects on the electrochemical performance of MnO2–NiO eco-friendly material for supercapacitor electrode application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we have used various electrodeposition techniques, namely direct and pulse chronoamperometry, to prepare MnO2–NiO composite films from an acetate solution onto fluorine-doped tin oxide glass substrates (FTO). Subsequently, the metal oxide conversion process was carried out through a heat treatment at 300 °C for 5 h. We used X-ray Diffraction, Field-Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray Spectroscopy (EDX), and Fourier-Transform Infrared Spectroscopy (FTIR) to investigate the crystalline properties, compositions, and morphologies of the electrodeposited films. To evaluate the electrochemical performance, we conducted cyclic voltammetry (CV), galvanostatic charge–discharge tests (GCD), and electrochemical impedance spectroscopy (EIS). Specifically, when applying the pulse deposition mode (denoted as P), the FTO/MnO2–NiO (P) film exhibited a specific capacitance of 375 Fg−1 at a current density of 0.5 Ag−1, meeting the required standard. This result confirms that the FTO/MnO2–NiO (P) film is a promising alternative for electrode applications. Additionally, the film demonstrated an impressive 56.87% capacity retention after 1000 galvanostatic charge–discharge cycles at a current density of 2 Ag−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

There is no search data policy and data availability data.

References

  1. M. Mirzaeian, Q. Abbas, A. Ogwu, P. Hall, M. Goldin, M. Mirzaeian, H.F. Jirandehi, Electrode and electrolyte materials for electrochemical capacitors. Int. J. Hydrog. Energy 42(40), 25565–25587 (2017)

    Article  CAS  Google Scholar 

  2. C. Wang, R. Xiong, J. Tian, J. Lu, C. Zhang, Rapid ultracapacitor life prediction with a convolutional neural network. Appl. Energy 305, 117819 (2022)

    Article  Google Scholar 

  3. Y. Guo, X. Zou, Y. Wei, L. Shu, A. Li, J. Zhang, R. Wang, Synthesis of organic hybrid ruthenium oxide nanoparticles for high-performance supercapacitors. ElectrochimicaActa 443, 141938 (2023)

    Article  CAS  Google Scholar 

  4. R. Packiaraj, P. Devendran, K.S. Venkatesh, S. AsathBahadur, A. Manikandan, N. Nallamuthu, Electrochemical investigations of magnetic Co3O4 nanoparticles as an active electrode for supercapacitor applications. J. Supercond. Novel Magn. 32, 2427–2436 (2019)

    Article  CAS  Google Scholar 

  5. S. Pappu, T.N. Rao, S.K. Martha, S.V. Bulusu, Electrodeposited manganese oxide based redox mediator driven 2.2 V high energy density aqueous supercapacitor. Energy. 243, 122751 (2022)

    Article  CAS  Google Scholar 

  6. R. Ahmad, M.A. Shah, Hydrothermally synthesised nickel oxide nanostructures on nickel foam and nickel foil for supercapacitor application. Ceram. Int. 49(4), 6470–6478 (2023)

    Article  CAS  Google Scholar 

  7. A. Sayah, F. Habelhames, A. Bahloul, B. Nessark, Y. Bonnassieux, D. Tendelier, E. Jouad, M, Electrochemical synthesis of polyaniline-exfoliated graphene composite films and their capacitance properties. J. Electroanal. Chem. 818, 26–34 (2018)

    Article  CAS  Google Scholar 

  8. A. Tounsi, F. Habelhames, A. Sayah, A. Bahloul, L. Lamiri, B. Nessark, Electrosynthesis of a ternary composite film polyaniline-MnO2-graphene in a one-step. Ionics (2022). https://doi.org/10.1007/s11581-021-04316-2

    Article  Google Scholar 

  9. A. Sayah, F. Habelhames, A. Bahloul, A. Boudjadi, The effect of electrodeposition applied potential on the electrochemical performance of polyaniline films. J. Mater. Sci.: Mater. Electron. 32, 10692–10701 (2021)

    CAS  Google Scholar 

  10. A. Sayah, F. Habelhames, A. Bahloul, Y. Ghalmi, Capacitance properties of electrochemically synthesisedpolybithiophene-graphene exfoliated composite films. Iran. J. Chem. Chem. Eng. 38(3), 201–210 (2019)

    CAS  Google Scholar 

  11. K. Wickramaarachchi, M. Minakshi, Consequences of electrodeposition parameters on the microstructure and electrochemical behavior of electrolytic manganese dioxide (EMD) for supercapacitor. Ceram. Int. 48(14), 19913–19924 (2022)

    Article  CAS  Google Scholar 

  12. M. Ghaemi, Binder,L.Effectsofdirectandpulsecurrentonelectrodepositionofmanganese dioxide. J. Power Sour. 111, 248–254 (2002)

    Article  CAS  Google Scholar 

  13. M.S. Iqbal, M. Iqbal, M. Haseeb, M. Aftab, A. Amin, H. Anwar, Investigation of the effect of annealing temperature on photophysical properties of manganese dioxide nanostructure prepared via co-precipitation route. IOP Conf. Ser.: Mater. Sci. Eng. 863(1), 012033 (2020)

    Article  CAS  Google Scholar 

  14. P.V.M. Dixini, B.B. Carvalho, G.R. Gonçalves et al., Sol–gel synthesis of manganese oxide supercapacitor from manganese recycled from spent Zn–MnO2 batteries using organic acid as a leaching agent. Ionics. 25, 4381–4392 (2019). https://doi.org/10.1007/s11581-019-02995-6

    Article  CAS  Google Scholar 

  15. T. Lin, J. Lin, X. Wei, L. Lu, X. Yin, Hydrothermal synthesis of nano-sized MnO2supported on attapulgite electrode materials for supercapacitors. Int. J. Hydrog. Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.12.151

    Article  Google Scholar 

  16. Y. Tian, Z. Liu, R. Xue, L. Huang, An efficient supercapacitor of three-dimensional MnO2 film prepared by chemical bath method. J. Alloys Compd. 671, 312 (2016)

    Article  CAS  Google Scholar 

  17. V.J. Mane, D.B. Malavekar, S.B. Ubale, R.N. Bulakhe, C.D. Lokhande, Binder free lanthanum doped manganese oxide@ graphene oxide composite as high energy density electrode material for flexible symmetric solid statesupercapacitor. Electrochim.  Acta 335, 135613 (2020)

    Article  CAS  Google Scholar 

  18. L. Zeng, G. Zhang, X. Huang, H. Wang, T. Zhou, H. Xie, Tuning crystal structure of MnO2 during different hydrothermal synthesis temperature and its electrochemical performance as cathode material for zinc ion Battery. Vacuum. 192, 110398 (2021)

    Article  CAS  Google Scholar 

  19. K. Allado, M. Liu, A. Jayapalan, D. Arvapalli, K. Nowlin, J. Wei, Binary MnO2/Co3O4 metal oxides wrapped on superalignedelectrospun carbon nanofibers as binder free supercapacitor electrodes. Energy & Fuels. 35(9), 8396–8405 (2021)

    Article  CAS  Google Scholar 

  20. M. Dinesh, Y. Haldorai, R.T.R. Kumar, Mn–Ni binary metal oxide for high-performance supercapacitor and electro-catalyst for oxygen evolution reaction. Ceram. Int. 46(18), 28006–28012 (2020)

    Article  CAS  Google Scholar 

  21. Ö. Budak, Ö. Uğuz, A. Koca, Simultaneous electrochemical deposition of nickel cobalt oxide-reduced graphene oxide composites for high performance asymmetric supercapacitors. J. Energy Storage. 47, 103538 (2022)

    Article  Google Scholar 

  22. M. Karuppaiah, P. Sakthivel, S. Asaithambi, R. Murugan, R. Yuvakkumar, G. Ravi, Solvent dependent morphological modification of micro-nano assembled Mn2O3/NiO composites for high performance supercapacitor applications. Ceram. Int. 45(4), 4298–4307 (2019)

    Article  CAS  Google Scholar 

  23. X. Zhao, X. Liu, F. Li, M. Huang, MnO2@ NiOnanosheets@ nanowires hierarchical structures with enhanced supercapacitive properties. J. Mater. Sci. 55(6), 2482–2491 (2020)

    Article  CAS  Google Scholar 

  24. J.W. K.Xiao, Amorphous MnO2 supportedon3D-N inanodendrites for large areal capacitance supercapacitors. Electrochim. Acta. 149, 341 (2014)

    Article  Google Scholar 

  25. Y.Y. Sun, W.H. Zhang, D.S. Li, L. Gao, C.L. Hou, Y.H. Zhang, Y. Liu, Direct formation of porous MnO2/Ni composite foam applied for high-performance supercapacitors at mild conditions. Electrochim. Acta 178, 823 (2015)

    Article  CAS  Google Scholar 

  26. J.J.C.Y.H.C. Li, X.F. Chen, X. Zhang, Synthesis of NiO@MnOcore/shell nano composites for supercapacitor application. Appl. Surf. Sci. 360, 534 (2016)

    Article  Google Scholar 

  27. B.J. Zhang, W.Y. Li, J.Q. .Sun, G.J. He, R. Zou, J. Hu, Z. Chen, NiO/MnO2 core/shell nano composites for high-performance pseudocapacitors. Mater. Lett. 114, 40 (2014)

    Article  CAS  Google Scholar 

  28. E.H. Liu, W. Li, J. Li, X.Y. Meng, R. Ding, S.T. Tan, Preparation and characterization of nanostructured NiO/MnO2 composite electrode for electrochemical supercapacitors. Mater. Res. Bull. 44(5), 1122–1126 (2009)

    Article  CAS  Google Scholar 

  29. S. Saha, S. Chhetri, P. Khanra, P. Samanta, H. Koo, N.C. Murmu, T. Kuila, In-situ hydrothermal synthesis of MnO2/NiO@ Ni hetero structure electrode for hydrogen evolution reaction and high energy asymmetric supercapacitor applications. J. Energy Storage. 6, 22–31 (2016)

    Article  Google Scholar 

  30. S. Kakroo, K. Surana, B. Bhattacharya, Electrodeposited MnO2–NiO composites as a pt free counter electrode for dye-sensitized solar cells. J. Electron. Mater. 49(3), 2197–2202 (2020)

    Article  CAS  Google Scholar 

  31. H.M. Lee, K. Lee, C.K. Kim, Electrodeposition of manganese-nickel oxide films on a graphite sheet for electrochemical capacitor applications. Materials. 7(1), 265–274 (2014)

    Article  Google Scholar 

  32. Y. Ghalmi, F. Habelhames, A. Sayah, A. Bahloul, B. Nessark, M. Shalabi, J.M. Nunzi, Capacitance performance of NiO thin films synthesized by direct and pulse potentiostatic methods. Ionics. 25(12), 6025–6033 (2019)

    Article  CAS  Google Scholar 

  33. S.R. Majid, Effects of electrodeposition mode and deposition cycle on the electrochemical performance of MnO2–NiO composite electrodes for high-energy-density supercapacitors. PloS one 11(5), e0154566 (2016)

    Article  Google Scholar 

  34. M. Musil, B. Choi, A. Tsutsumi, Morphology and electrochemical properties of α-, β-, γ-, and δ-MnO2 synthesized by redox method. J. Electrochem. Soc. 162(10), A2058 (2015)

    Article  CAS  Google Scholar 

  35. M. Aghazadeh, M. Asadi, M.G. Maragheh, M.R. Ganjali, P. Norouzi, F. Faridbod, Facile preparation of MnO2nanorods and evaluation of their supercapacitivecharacteristics. Appl. Surf. Sci. 364, 726–731 (2016)

    Article  CAS  Google Scholar 

  36. S. Xi, Y. Zhu, Y. Yang, S. Jiang, Z. Tang, Facile synthesis of free-standingNiO/MnO2 core-shell nanoflakes on carbon cloth for flexible supercapacitors. Nanoscale Res. Lett. 12(1), 1–10 (2017)

    Article  Google Scholar 

  37. J. Rodríguez-Moreno, E. Navarrete-Astorga, E.A. Dalchiele, J.R. Ramos Barrado, F. Martín, Vertically aligned ZnO@ CuS@ PEDOT core@ shell nanorod arrays decorated with MnOnano particles for ahigh-performance and semi-transparent supercapacitor electrode. Chem. Commun. 50(42), 5652–5655 (2014)

    Article  Google Scholar 

Download references

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of this manuscript.

Corresponding author

Correspondence to A. Sayah.

Ethics declarations

Conflict of interest

There are no competing interests.

Ethical approval

Yes, ethical standards have been complied with.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayah, A., Boumaza, N., Habelhames, F. et al. Electrodeposition mode effects on the electrochemical performance of MnO2–NiO eco-friendly material for supercapacitor electrode application. J Mater Sci: Mater Electron 35, 62 (2024). https://doi.org/10.1007/s10854-023-11832-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11832-6

Navigation