Skip to main content
Log in

Effect of Fe/Cd/O doping on the physicochemical properties of α-NiS nanocrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Effect of Fe/Cd/O doping on the physicochemical properties of α-NiS nanocrystals (exhibiting useful optical, electronic, and optoelectronic properties) has been studied by preparing the Fe/Cd/O-doped (2.5/5.0 mol%) α-NiS nanocrystals using a pulsed microwave heating method and characterizing them chemically and physically using the available standard methods. X-ray diffraction and energy-dispersive X-ray absorption analyses confirm the phase purity. Atomic force microscopic analysis shows the average particle sizes within 19–20 nm; scanning electron microscopic analysis indicates the spherical shape and homogeneity of the nanocrystals prepared. Optical and magnetic measurements indicate that doping has significantly modified the optical absorption coefficient (with bandgap energy values in the range of 3.62–4.73 eV), photoluminescence yield, and ferromagnetic ordering. Electrical (DC/AC) measurements made at various temperatures (40–150 °C) and frequencies (102–106 Hz) indicate a normal electrical behavior and increase of electrical/electronic conductivity and dielectric constant due to doping. The study indicates that oxygen (anionic) doping makes α-NiS nanocrystals a better electrochemical sensing performer and cathode material for use in storage batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

We confirm that we have known the research data policy and the data are available.

References

  1. F. Zhan, B. Geng, Y. Guo, L. Wang, One-step synthesis of hierarchical carnation-like NiS superstructures via a surfactant-free aqueous solution route. J. Alloys Compd. 482, L1–L5 (2009). https://doi.org/10.1016/j.jallcom.2009.03.155)

    Article  CAS  Google Scholar 

  2. A.M. Fernandez, M.T.S. Nair, P.K. Nair, Chemically deposited ZnS–NiS–CuS optical filters with wide range solar control characteristics. Mater. Manuf. Process. 8, 535–548 (1993). https://doi.org/10.1080/10426919308934856)

    Article  CAS  Google Scholar 

  3. P. Yang, B. Song, R. Wu, Y. Zheng, Y. Sun, Y.K. Jain, Solvothermal growth of NiS single-crystalline nanorods. J. Alloys Compd. 481, 450–454 (2009). https://doi.org/10.1016/j.jallcom.2009.02.154)

    Article  CAS  Google Scholar 

  4. S. Nagaveena, C.K. Mahadevan, Preparation by a facile method and characterization of amorphous and crystalline nickel sulfide nanophases. J. Alloys Compd. 582, 447–456 (2014). https://doi.org/10.1016/j.jallcom.2013.08.031)

    Article  CAS  Google Scholar 

  5. M. Salavathi-Niasari, F. Davar, M. Mazaheri, Synthesis, characterization and magnetic properties of NiS1+ x nanocrystals from [bis(salicylidene)nickel(II)] as new precursor. Mater. Res. Bull. 44, 2246–2251 (2009). https://doi.org/10.1016/j.materresbull.2008.02.007)

    Article  Google Scholar 

  6. L. Peng, X. Ji, H. Wan, Y. Ruan, K. Xu, C. Chen, L. Miao, J. Jiang, Nickel sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: an experimental and computational study. Electrochim. Acta. 182, 361–367 (2015). https://doi.org/10.1016/j.electacta.2015.09.024)

    Article  CAS  Google Scholar 

  7. M. Kristi, B. Dojer, S. Gyergyck, J. Kristi, Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method. Heliyon. 3, e00273 (2017). https://doi.org/10.1016/j.heliyon.2017.e00273)

    Article  Google Scholar 

  8. G.B. Shombe, M.D. Khan, C. Zequine, C. Zhao, R.K. Gupta, N. Revaprasadu, Direct solvent free synthesis of bare α-NiS, β-NiS and α-β-NiS composite as excellent electrocatalysts: effect of self-capping on supercapacitance and overall water splitting activity. Sci. Rep. 10, 3260 (2020). https://doi.org/10.1038/s41598-020-59714-9)

    Article  CAS  Google Scholar 

  9. S. Nachimuthu, K. Kannan, S. Thangavel, K. Gurushankar, Electrochemical and magnetic properties of 3D porous NiS/CuS nanocomposites. Appl. Surf. Sci. Adv. 7, 100209 (2022). https://doi.org/10.1016/j.apsadv.2022.100209)

    Article  Google Scholar 

  10. Y. Fazli, S.M. Pourmortazavi, I. Kohsari, M.S. Karimi, M. Tajdari, Synthesis, characterization and photocatalytic property of nickel sulphide nanoparticles. J. Mater. Sci. Mater. Electron. 27, 7192–7199 (2016). https://doi.org/10.1007/s10854-016-4683-2)

    Article  CAS  Google Scholar 

  11. M.A. AlMalki, A.Z. Khan, W.A. El-Said, Synthesis and characterization of nickel sulphide and nickel sulphide/molybdenum disulphide nanocomposite modified ITO electrode as efficient anode for methanol electrooxidation. Appl. Surf. Sci. Adv. 6, 100187 (2021). https://doi.org/10.1016/j.apsadv.2021.100187)

    Article  Google Scholar 

  12. Y. Zhang, S. Wei, P. Xing, L. Dai, Y. Wang, Iron-doped nickel sulphide nanoparticles grown on N-doped reduced graphene oxide as efficient electro-catalysts for oxygen evolution reaction. J Electroanal. Chem. 936, 117323 (2023). https://doi.org/10.1016/j.jelechem.2023.117323)

    Article  CAS  Google Scholar 

  13. D.J. Norris, A.L. Efros, S.C. Erwin, Doped nanocrystals. Science. 319, 1776–1779 (2008). https://doi.org/10.1126/science.1143802)

    Article  CAS  Google Scholar 

  14. A. Molla, M. Sahu, S. Hussain, Synthesis of tunable band gap semiconductor nickel sulphide nanoparticles: rapid and round the clock degradation of organic dyes. Sci. Rep. 6, 26034 (2016). https://doi.org/10.1038/srep26034)

    Article  CAS  Google Scholar 

  15. G. Pandey, Synthesis, characterization and optical properties determination of millerite NiS nanorods. Phys. E. 44, 1657–1661 (2012). https://doi.org/10.1016/j.jphyse.2012.04.015)

    Article  CAS  Google Scholar 

  16. W. Dong, L. An, X. Wang, B. Li, B. Chen, W. Tang, C. Li, G. Wang, Controlled synthesis and morphology evolution of nickel sulfide micro/nanostructure. J. Alloys Compd. 509, 2170–2175 (2011). https://doi.org/10.1016/j.jallcom.2010.10.178)

    Article  CAS  Google Scholar 

  17. Q. Pan, K. Huang, S. Ni, F. Yang, D. He, Synthesis of flower- and rod-like nickel sulfide nanostructures by an organic-free hydrothermal process. Mater. Res. Bull. 43, 1440–1447 (2008). https://doi.org/10.1016/j.materresbull.2007.06.038)

    Article  CAS  Google Scholar 

  18. S. Lee, D. Song, D. Kim, J. Lee, S. Kim, I.Y. Park, Y.D. Choi, Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS:Cu nanocrystals. Mater. Lett. 58, 342–346 (2004). https://doi.org/10.1016/50167-577X(03)00483-X)

    Article  CAS  Google Scholar 

  19. M. Priya, R.S.S. Saravanan, C.K. Mahadevan, Novel synthesis and characterization of CdS nanoparticles. Energy Proceedia. 15, 333–339 (2012). https://doi.org/10.1016/j.egy.pro.2012.02.040)

    Article  CAS  Google Scholar 

  20. V. Singh, P.K. Sharma, P. Chauhan, Surfactant mediated phase transformation of CdS nanoparticles. Mater. Chem. Phys. 121, 202–207 (2010). https://doi.org/10.1016/j.matchemphys.2010.01.019)

    Article  CAS  Google Scholar 

  21. C. Tang, C. Zang, J. Su, D. Zhang, G. Li, Y. Zhang, K. Yu, Structure and magnetic properties of flower-like α-NiS nanostructures. Appl. Surf. Sci. 257, 3388–3391 (2011). https://doi.org/10.1016/j.apsusc.2010.11.030)

    Article  CAS  Google Scholar 

  22. W.J. Liu, W.D. He, Y.M. Wang, D. Wang, Z.C. Zhang, New approach to hybrid materials: functional sub-micrometer core/shell particles coated with NiS clusters by γ-radiation. Polymer. 46, 8366–8372 (2005). https://doi.org/10.1016/j.polymer.2005.07.018)

    Article  CAS  Google Scholar 

  23. S. Chakrabarti, S.K. Mandal, S. Chaudhuri, Cobalt doped γ-Fe2O3 nanoparticles: synthesis and magnetic properties. Nanotechnology. 16, 506–511 (2005). https://doi.org/10.1088/0957-4484/16/4/029)

    Article  CAS  Google Scholar 

  24. S.I.S. Ramya, C.K. Mahadevan, Preparation and structural, optical, magnetic, and electrical characterization of Mn2+/Co2+/Cu2+ doped hematite nanocrystals. J. Solid State Chem. 211, 37–50 (2014). https://doi.org/10.1016/j.jssc.2013.11.022)

    Article  Google Scholar 

Download references

Funding

The authors declare that this research did not receive any specific personal support or any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

CKM contributed to Conceptualization; Methodology; Validation; Supervision; Writing of the original draft; and Writing, reviewing, and editing of the manuscript.  SN contributed to Experimental investigation; Data curation; Formal analysis; and Writing of the original draft.

Corresponding author

Correspondence to C. K. Mahadevan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The work reported does not involve using any materials which require the ethical approval to be obtained.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 280.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahadevan, C.K., Nagaveena, S. Effect of Fe/Cd/O doping on the physicochemical properties of α-NiS nanocrystals. J Mater Sci: Mater Electron 35, 72 (2024). https://doi.org/10.1007/s10854-023-11811-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11811-x

Navigation