Skip to main content
Log in

Comparison of the effect of Cr3+ substituted Co–Cu and Cu–Co nano ferrites on structural, magnetic, DC electrical resistivity, and dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cr3-substituted Co–Cu (Co0.7Cu0.3Fe2−xCrxO4) and Cu-Co (Cu0.7Co0.3Fe2−xCrxO4) nano ferrite composites were prepared using the sol–gel approach, where x = 0.0, 0.05, 0.1, 0.15, 0.2, and 0.25. We analysed their structural, DC electrical resistivity, magnetic, and dielectric properties comprehensively. X-ray diffraction (XRD) results indicate the formation of a single-phase spinel ferrite structure. The introduction of Cr3+ ions leads to a reduction in lattice volume and crystallite size. Field emission scanning electron microscopy (FESEM) images reveal non-spherical particles on a uniform surface, with a decrease in grain size as Cr3+ doping levels increase. The Fourier-transform infrared (FTIR) patterns are consistent with the XRD results, confirming the presence of spinel ferrite. The variation significantly influences the magnetic properties in Cr3+ doping. The saturation magnetization (Ms) decreases as the Cr3+ content increases to x = 0.1. Beyond that, it continues to decrease with higher Cr3+ concentrations. This behavior is attributed to the antiferromagnetic nature of Cr3+ ions, which do not favour their occupation at the B sites. The DC resistivity increases with higher Cr3+ concentrations and decreases with rising temperatures, indicating the semiconducting behavior of the ferrites. Furthermore, the loss tangent (tanδ) exhibits an exponential decrease with increasing frequency, pointing to typical Maxwell–Wagner-type dielectric dispersion driven by interfacial polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data can be obtained from the corresponding author on request.

References

  1. S. Akter, M.N.I. Khan, F. Ferdous, H.N. Das, I.M. Syed, AIP Adv. 12(9), 095015 (2022)

    CAS  Google Scholar 

  2. H.R. Daruvuri, K. Chandu, N. Murali, D. Parajuli, M.P. Dasari, Inorg. Chem. Commun. 143, 109794 (2022)

    Google Scholar 

  3. R.V. Bharathi, M.K. Raju, S. Uppugalla, V. Raghavendra, D. Parajuli, B. Suryanarayana, S.Y. Mulushoa, N. Murali, K. Samatha, Inorg. Chem. Commun. 149, 110452 (2023)

    Google Scholar 

  4. R.K. Panda, R. Muduli, G. Jayarao, D. Sanyal, D. Behera, J. Alloy. Compd. 669, 19–28 (2016)

    CAS  Google Scholar 

  5. A.A. Al-Juaid, M.A. Gabal, J. Market. Res. 14, 10–24 (2021)

    CAS  Google Scholar 

  6. K.L.V. Nagasree, B. Suryanarayana, V. Raghavendra, S. Uppugalla, T.W. Mammo, D. Kavyasri, N. Murali, M.K. Raju, D. Parajuli, K. Samatha, Inorg. Chem. Commun. 149, 110405 (2023)

    CAS  Google Scholar 

  7. V. Dhivya, G. Rajkumar, S. Mahalaxmi, K. Rajkumar, B. Saravana Karthikeyan, S. Kavitha, R. Karpagam, K. Sakthipandi, G.K. Sathishkumar, Ceram. Int. 48, 25346–25354 (2022)

    CAS  Google Scholar 

  8. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, J. Alloy. Compd. 578, 314–319 (2013)

    CAS  Google Scholar 

  9. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, J. Alloy. Compd. 541, 29–35 (2012)

    CAS  Google Scholar 

  10. I. Lisser, M. Belaiche, M. Elansary, Y. Mouhib, C. Ahmani Ferdi, M. Tabyaoui, J. Mater. Res. 38(6), 1669–1682 (2023)

    CAS  Google Scholar 

  11. C. Murugesan, B. Sathyamoorthy, G. Chandrasekaran, Phys. Scr. 90(8), 085809 (2015)

    Google Scholar 

  12. B. Suryanarayana, K. Ramanjaneyulu, V. Raghavendra, N. Murali, D. Parajuli, S.Y. Mulushoa, P. Choppara, P.A. Rao, Y. Ramakrishna, K. Chandramouli, J. Indian Chem. Soc. 99(8), 100623 (2022)

    CAS  Google Scholar 

  13. C. Komali, N. Murali, K. Rajkumar, A. Ramakrishna, S. Yonatan Mulushoa, D. Parajuli, P.N.V.V.L. Pramila Rani, S. Ampolu, K. Chandra Mouli, Y. Ramakrishna, Chem. Papers 77(1), 109–117 (2023)

    CAS  Google Scholar 

  14. E. Ahilandeswari, R. Rajesh Kanna, K. Sakthipandi, Physica B 599, 412425 (2020)

    CAS  Google Scholar 

  15. C. Rambabu, S. Uppugalla, R. Verma, A. Ramakrishna, N. Murali, C. Shivanarayana, D. Parajuli, B. Suryanarayana, K.M. Batoo, S. Hussain, P.L. Narayana, Mater. Sci. Eng. B 289, 116257 (2023)

    CAS  Google Scholar 

  16. D. Parajuli, N. Murali, K. Samatha, J. Nepal Phys. Soc. 7(2), 24–32 (2021)

    Google Scholar 

  17. P.P. Hankare, U.B. Sankpal, R.P. Patil, I.S. Mulla, P.D. Lokhande, N.S. Gajbhiye, J. Alloy. Compd. 485(1–2), 798–801 (2009)

    CAS  Google Scholar 

  18. Y. Lu, T. Zhang, Y. Liu, G. Luo, Chem. Eng. J. 210, 18–25 (2012)

    CAS  Google Scholar 

  19. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, AYu. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, V.A. Turchenko, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Mater. Today Chem. 20, 100460 (2021)

    CAS  Google Scholar 

  20. D.A. Vinnik, V.E. Zhivulin, D.P. Sherstyuk, AYu. Starikov, P.A. Zezyulina, S.A. Gudkova, D.A. Zherebtsov, K.N. Rozanov, S.V. Trukhanov, K.A. Astapovich, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, J. Mater. Chem. C 9, 5425–5436 (2021)

    CAS  Google Scholar 

  21. A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, I.S. Kazakevich, V. An, E.L. Trukhanov, V.O. Trukhanova, V.A. Natarov, M.M. Turchenko, A.M.B. Salem, J. Magn. Magn. Mater. 426, 487–496 (2017)

    CAS  Google Scholar 

  22. M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, J. Mater. Sci. Mater. Electron. 32, 16694–16705 (2021)

    CAS  Google Scholar 

  23. K. Dukenbayev, I.V. Korolkov, D.I. Tishkevich, A.L. Kozlovskiy, S.V. Trukhanov, Y.G. Gorin, E.E. Shumskaya, E.Y. Kaniukov, D.A. Vinnik, M.V. Zdorovets, M. Anisovich, A.V. Trukhanov, D. Tosi, C. Molardi, Nanomaterials 9, 494 (2019)

    CAS  Google Scholar 

  24. M.A. Almessiere, A.V. Trukhanov, F.A. Khan, Y. Slimani, N. Tashkandi, V.A. Turchenko, T.I. Zubar, D.I. Tishkevich, S.V. Trukhanov, L.V. Panina, A. Baykal, Ceram. Int. 46, 7346–7354 (2020)

    CAS  Google Scholar 

  25. K.K. Kadyrzhanov, D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, J. Mater. Sci. Mater. Electron. 31, 11729–11740 (2020)

    CAS  Google Scholar 

  26. R.E. El-Shater, H. El Shimy, S.A. Saafan, M.A. Darwish, D. Zhou, A.V. Trukhanov, S.V. Trukhanov, F. Fakhry, J. Alloys Compd. 928, 166954 (2022)

    CAS  Google Scholar 

  27. A.L. Kozlovskiy, M.V. Zdorovets, Mater. Chem. Phys. 263, 124444 (2021)

    CAS  Google Scholar 

  28. M.A. El-Ghobashy, H. Hashim, M.A. Darwish, M.U. Khandaker, A. Sulieman, N. Tamam, S.V. Trukhanov, A.V. Trukhanov, M.A. Salem, Nanomaterials 12, 1103 (2022)

    CAS  Google Scholar 

  29. S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, Low Temp. Phys. 37, 465–469 (2011)

    CAS  Google Scholar 

  30. A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev, Z.V. Ignatovich, K. Kadyrzhanov, Sensors 20, 4851 (2020)

    CAS  Google Scholar 

  31. S.V. Trukhanov, I.O. Troyanchuk, N.V. Pushkarev, H. Szymczak, J. Exp. Theor. Phys. 96, 110–117 (2003)

    CAS  Google Scholar 

  32. S.V. Trukhanov, M.V. Bushinsky, I.O. Troyanchuk, H. Szymczak, J. Exp. Theor. Phys. 99, 756–765 (2004)

    CAS  Google Scholar 

  33. K. Chandramouli, V. Raghavendra, P.P. Varma, B. Suryanarayana, T.W. Mammo, D. Parajuli, P. Taddesse, N. Murali, Appl. Phys. A 127, 1–14 (2021)

    Google Scholar 

  34. K. Chandramouli, B. Suryanarayana, P.P. Varma, V. Raghavendra, K.A. Emmanuel, P. Taddesse, N. Murali, T.W. Mammo, D. Parajuli, Res. Phys. 24, 104117 (2021)

    Google Scholar 

  35. S.V. Trukhanov, V.V. Fedotova, A.V. Trukhanov, S.G. Stepin, H. Crystallogr, Rep. 53, 1177–1180 (2008)

    CAS  Google Scholar 

  36. A.L. Kozlovskiy, A. Alina, M.V. Zdorovets, J. Mater. Sci. Mater. Electron. 32, 3863–3877 (2021)

    CAS  Google Scholar 

  37. Y. Slimani, M.A. Almessiere, A.D. Korkmaz, A. Baykal, H. Gungunes, M.G. Vakhitov, D.S. Klygach, S.V. Trukhanov, A.V. Trukhanov, J. Magn. Magn. Mater. 562, 169782 (2022)

    CAS  Google Scholar 

  38. B. Unal, M.A. Almessiere, A.D. Korkmaz, Y. Slimani, A. Baykal, J. Rare Earths 38(10), 1103–1113 (2020)

    CAS  Google Scholar 

  39. Y. Slimani, H. Güngüneş, M. Nawaz, A. Manikandan, H.S. El Sayed, M.A. Almessiere, H. Sözeri, S.E. Shirsath, I. Ercan, A. Baykal, Ceram. Int. 44(12), 14242–14250 (2018)

    CAS  Google Scholar 

  40. H.G. Abd-Elbaky, M. Rasly, R.G. Deghadi, G.G. Mohamed, M.M. Rashad, J. Market. Res. 20, 905–915 (2022)

    CAS  Google Scholar 

  41. M.A. Almessiere, A.V. Trukhanov, Y. Slimani, K.Y. You, S.V. Trukhanov, E.L. Trukhanova, F. Esa, A. Sadaqat, K. Chaudhary, M. Zdorovets, A. Baykal, Nanomaterials 9(2), 202 (2019)

    CAS  Google Scholar 

  42. N.A. Algarou, Y. Slimani, M.A. Almessiere, F.S. Alahmari, M.G. Vakhitov, D.S. Klygach, S.V. Trukhanov, A.V. Trukhanov, A. Baykal, J. Market. Res. 9(3), 5858–5870 (2020)

    CAS  Google Scholar 

  43. N.A. Algarou, Y. Slimani, M.A. Almessiere, A. Sadaqat, A.V. Trukhanov, M.A. Gondal, A.S. Hakeem, S.V. Trukhanov, M.G. Vakhitov, D.S. Klygach, A. Manikandan, Nanomaterials 10(11), 2134 (2020)

    CAS  Google Scholar 

  44. M.A. Almessiere, S. Güner, Y. Slimani, M. Hassan, A. Baykal, M.A. Gondal, U. Baig, S.V. Trukhanov, A.V. Trukhanov, Nanomaterials 11(9), 2461 (2021)

    CAS  Google Scholar 

  45. M.A. Almessiere, N.A. Algarou, Y. Slimani, A. Sadaqat, A. Baykal, A. Manikandan, S.V. Trukhanov, A.V. Trukhanov, I. Ercan, Materials Today Nano 18, 100186 (2022)

    CAS  Google Scholar 

  46. K. Sakthipandi, K. Kannagi, A. Aslam Hossain, Ceram. Int. 46, 19634–19638 (2020)

    CAS  Google Scholar 

  47. M.A. Almessiere, Y. Slimani, N.A. Algarou, M.G. Vakhitov, D.S. Klygach, A. Baykal, T.I. Zubar, S.V. Trukhanov, A.V. Trukhanov, H. Attia, M. Sertkol, Adv. Electron. Mater. 8(2), 2101124 (2022)

    CAS  Google Scholar 

  48. S.T. Alone, S.E. Shirsath, R.H. Kadam, K.M. Jadhav, J. Alloy. Compd. 509(16), 5055–5060 (2011)

    CAS  Google Scholar 

  49. C. Ruttanapun, S. Maensiri, J. Phys. D Appl. Phys. 48(49), 495103 (2015)

    Google Scholar 

  50. M. Ajmal, A. Maqsood, Mater. Sci. Eng. B 139(2–3), 164–170 (2007)

    CAS  Google Scholar 

  51. R. Ahmad, I.H. Gul, M. Zarrar, H. Anwar, M.B. Khan Niazi, A. Khan, J. Magn. Magn. Mater. 405, 28–35 (2016)

    CAS  Google Scholar 

  52. T. Tatarchuk, M. Myslin, I. Lapchuk, A. Shyichuk, A.P. Murthy, R. Gargula, P. Kurzydło, B.F. Bogacz, A.T. Pędziwiatr, Chemosphere 270, 129414 (2021)

    CAS  Google Scholar 

  53. R. Rajesh Kanna, K. Sakthipandi, N. Lenin, E. James Jebaseelan Samuel, J. Mater. Sci. Mater. Electron. 30, 4473–4486 (2019)

    Google Scholar 

  54. A. Ramakrishna, N. Murali, T.W. Mammo, K. Samatha, V. Veeraiah, Structural and DC electrical resistivity, magnetic properties of Co0.5M0.5Fe2O4 (M = Ni, Zn, and Mg) ferrite nanoparticles. Phys. B: Condens. Matter 534, 134–140 (2018)

    CAS  Google Scholar 

  55. A.B. Mugutkar, S.K. Gore, U.B. Tumberphale, V.V. Jadhav, R.S. Mane, S.M. Patange, S.E. Shirsath, S.S. Jadhav, J. Rare Earths 38(10), 1069–1075 (2020)

    CAS  Google Scholar 

  56. A. Zubair, Z. Ahmad, A. Mahmood, W.C. Cheong, I. Ali, M.A. Khan, A.H. Chughtai, M.N. Ashiq, Res. Phys. 7, 3203–3208 (2017)

    Google Scholar 

  57. Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, Mater. Lett. 60(29–30), 3548–3552 (2006)

    CAS  Google Scholar 

  58. E.E. Ateia, K.K. Meleka, F.Z. Ghobrial, Appl. Phys. A 127, 1–10 (2021)

    Google Scholar 

  59. S. Jauhar, J. Kaur, A. Goyal, S. Singhal, RSC Adv. 6(100), 97694–97719 (2016)

    CAS  Google Scholar 

  60. N.I. Abu-Elsaad, A.S. Nawara, S.A. Mazen, J. Phys. Chem. Solids 146, 109620 (2020)

    CAS  Google Scholar 

  61. P.P. Hankare, V.T. Vader, N.M. Patil, S.D. Jadhav, U.B. Sankpal, M.R. Kadam, B.K. Chougule, N.S. Gajbhiye, Mater. Chem. Phys. 113(1), 233–238 (2009)

    CAS  Google Scholar 

  62. S.F. Mansour, M.A. Abdo, S.M. Alwan, Ceram. Int. 44(7), 8035–8042 (2018)

    CAS  Google Scholar 

  63. M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, J. Magn. Magn. Mater. 371(2014), 43–48 (2014)

    CAS  Google Scholar 

  64. K. Hussain, N. Amin, M.I. Arshad, Ceram. Int. 47(3), 3401–3410 (2021)

    CAS  Google Scholar 

  65. S.S. Desai, S.E. Shirsath, K.M. Batoo, S.F. Adil, M. Khan, S.M. Patange, Physica B 596, 412400 (2020)

    CAS  Google Scholar 

  66. R. Rani, K.M. Batoo, P. Sharma, G. Anand, G. Kumar, S. Bhardwaj, M. Singh, Ceram. Int. 47(21), 30902–30910 (2021)

    CAS  Google Scholar 

  67. M.J. Iqbal, M.R. Siddiquah, J. Alloy. Compd. 453(1–2), 513–518 (2008)

    CAS  Google Scholar 

  68. R. Rajesh Kanna, K. Sakthipandi, J. Electron. Mater. 49, 1110–1119 (2020)

    CAS  Google Scholar 

  69. M.A. Ahmed, H.H. Afify, I.K. El Zawawia, A.A. Azab, J. Magn. Magn. Mater. 324(14), 2199–2204 (2012)

    CAS  Google Scholar 

  70. J. Chen, R.T. Rasool, G.A. Ashraf, H. Guo, Mater. Sci. Semicond. Process. 157, 107321 (2023)

    CAS  Google Scholar 

  71. S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, K.M. Jadhav, J. Appl. Phys. 106(2), 023914 (2009)

    Google Scholar 

  72. M.A. Gabal, Y.M. Al Angari, J. Magn. Magn. Mater. 322(20), 3159–3165 (2010)

    CAS  Google Scholar 

  73. R.K. Panda, R. Muduli, S.K. Kar, D. Behera, J. Alloy. Compd. 615, 899–905 (2014)

    CAS  Google Scholar 

  74. M.F. Zscherp, M. Bastianello, S. Nappini, E. Magnano, D. Badocco, S. Gross, M.T. Elm, J. Mater. Chem. C 10(8), 2976–2987 (2022)

    CAS  Google Scholar 

  75. S. Supriya, S. Kumar, M. Kar, J. Mater. Sci. Mater. Electron. 28, 10652–10673 (2017)

    CAS  Google Scholar 

  76. S. Manjura Hoque, M. Samir Ullah, F.A. Khan, M.A. Hakim, D.K. Saha, Phys. B Condens. Matter. 406, 1799–1804 (2011)

    CAS  Google Scholar 

  77. V. Verma, S.P. Gairola, V. Pandey, R.K. Kotanala, H. Su, Solid State Commun. 148, 117–121 (2008)

    CAS  Google Scholar 

  78. Y.M. Yakovlev, E.V. Rubalikaya, N. Lapovok, Sov. Phys. Solid State 10, 2301 (1969)

    Google Scholar 

  79. I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, J. Magn. Magn. Mater. 311, 494 (2007)

    CAS  Google Scholar 

  80. M.N. Ashiq, M.J. Iqbal, M. Najam-ul-Haq, P.H. Gomez, A.M. Qureshi, J. Magn. Magn. Mater. 324, 15 (2012)

    CAS  Google Scholar 

  81. S.G. Kakade, R.C. Kambale, Y.D. Kolekar, C.V. Ramana, J. Phys. Chem. Solids 98, 20–27 (2016)

    CAS  Google Scholar 

  82. S.A. Mazen, N.I. Abu-Elsaad, J. Magn. Magn. Mater. 324, 3366–3373 (2012)

    CAS  Google Scholar 

  83. T. Tsutaoka, T. Nakamura, K. Hatakeyama, J. Appl. Phys. 82, 3068 (1997)

    CAS  Google Scholar 

  84. R.K. Panda, R. Muduli, D. Behera, J. Alloys Compd. 634, 239 (2015)

    CAS  Google Scholar 

  85. A. Thakur, P. Thakur, J.H. Hsu, J. Alloys Compd. 509, 5315 (2011)

    CAS  Google Scholar 

  86. R.R. Kanna, K. Sakthipandi, A.S. Kumar, N.R. Dhineshbabu, S.S.M.A. Maraikkayar, A.S. Afroze, R.B. Jotania, M. Sivabharathy, Ceram. Int. 46, 13695–13703 (2020)

    CAS  Google Scholar 

  87. G. Packiaraj, K. Sakthipandi, R.B. Jotania, A. Hossain, J. Electron. Mater. 49, 3317–3324 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The author, K M Batoo, would like to thank Researchers Supporting Project no. (RSP2024R148), at King Saud University, Riyadh, Saudi Arabia, for financial support.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

BS, PVSKPV, PSVS, MGK: Prepared the sample and wrote the manuscript. NM: helped to discuss the article framework, participated in the testing of materials. TWM, VR, DP: developed the experimental formula and provided the measurements. KMB, SH: provided research ideas and guided experiments. All authors contributed to the discussions and preparation of the manuscript.

Corresponding author

Correspondence to N. Murali.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Ethical approval

The authors certify that they have no financial or personal interests that compete with or appear to influence the research presented in this publication. There are no human or animal participants in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryanarayana, B., Varma, P.V.S.K.P., Shanmukhi, P.S.V. et al. Comparison of the effect of Cr3+ substituted Co–Cu and Cu–Co nano ferrites on structural, magnetic, DC electrical resistivity, and dielectric properties. J Mater Sci: Mater Electron 35, 93 (2024). https://doi.org/10.1007/s10854-023-11808-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11808-6

Navigation