Skip to main content
Log in

Role of thermal heat-treatment to achieve a highly polycrystalline and compact α-MoO3 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Molybdenum trioxide (MoO3) thin film layers have been deposited via wet-chemical spin coating technique. The suitability to obtain a highly crystalline and compact MoO3 thin films by a post-deposition annealing treatment is investigated. The most stable α-orthorhombic phase of MoO3 with preferential bragg reflection (002) was revealed with structural analysis. The energy bandgap decreased to the annealed samples from 3.05 to 2.92 eV is related to the particle size enhancement. The Raman peak exhibited at 819 cm−1 to 500 °C annealed layer was identified to (Mo–O–Mo) symmetric stretching mode (Ag). The surface morphology studied by FESEM confirms the presence of well-adherent, void-free, densely packed granules with a uniform size of particles suitable for making thin back contact buffer layers CdTe devices. Furthermore, all the samples were observed to be uniformly and densely deposited without voids over a larger area. Electrical measurements, current density-voltage and capacitance-voltage were performed to calculate the ideality factor (η), barrier height (Φb), carrier concentration and flat band potentials. The increase in carrier concentration with rising annealing temperature confirms the growth of low-defect MoO3 layers with enhanced crystallinity. The results reported herein are promising and may have potential role to develop low-resistive back contact to CdTe for photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Appl. Phys. Lett. 95, 123301–123303 (2009)

    Google Scholar 

  2. G. Yuzheng, J. Robertson, Origin of the high work function and high conductivity of MoO3. Appl. Phys. Lett. 105, 222110–222114 (2014)

    Google Scholar 

  3. A.A. Al-Muntaser, M.A. Nasher, M.M. Makhlouf, Structural, electrical, and linear/nonlinear optical characteristics of thermally evaporated molybdenum oxide thin films. Ceram. Int. 48, 8069–8080 (2022)

    CAS  Google Scholar 

  4. O. Kamoun, A. Gassoumi, M. Shkir, N.E. Gorji, N. Turki-Kamoun, Synthesis and characterization of highly photocatalytic active Ce and Cu Co-doped novel spray pyrolysis developed MoO3 films for photocatalytic degradation of eosin-Y dye. Coatings 12, 823–833 (2022)

    CAS  Google Scholar 

  5. A. Thorat, K. Tikote, M. Bhadane, A. Phatangare, V. Bhoraskar, S. Dhole, S. Dahiwale, Effect of low energy nitrogen ion irradiation on MoO3 films. Opt. Mater. 128, 112349–112358 (2022)

    CAS  Google Scholar 

  6. N. Chaturvedi, S.K. Swami, V. Dutta, Electric field assisted spray deposited MoO3 thin films as a hole transport layer for organic solar cells. Sol. Energy 137, 379–384 (2016)

    CAS  Google Scholar 

  7. A. Bouzidi, N. Benramdane, H. Tabet-Derraz, C. Mathieu, B. Khelifa, R. Desfeux, Effect of substrate temperature on the structural and optical properties of MoO3 thin films prepared by spray pyrolysis technique. J. Mater. sci. eng. B 97, 5–8 (2003)

    Google Scholar 

  8. A. Chithambararaj a, N.S. Sanjini, S. Velmathi, A.C. Bose, Preparation of h-MoO3 and α-MoO3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation. Phys. Chem. Chem. Phys. 15, 14761–14769 (2013)

    Google Scholar 

  9. X.W. Lou, H.C. Zeng, Hydrothermal synthesis of r-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chem. Mater. 14, 4781–4789 (2002)

    CAS  Google Scholar 

  10. Z. Wei, S. Zhuiykov, Challenges and recent advancements of functionalization of two-dimensional nanostructured molybdenum trioxide and dichalcogenides. Nanoscale. 11, 15709–15738 (2019)

    CAS  Google Scholar 

  11. L. Khandare, D.J. Late, MoO3-rGO nanocomposites for electrochemical energy storage. Appl. Surf. Sci. 418, 2–8 (2017)

    CAS  Google Scholar 

  12. L. Khandare, S. Santosh, S.S. Terdale, D.J. Late, Ultra-fast α-MoO3 nanorod-based humidity sensor. Adv. Device Mater. 2, 15–22 (2016)

    CAS  Google Scholar 

  13. D. Sheng, X. Liu, Q. Zhang, H. Yi, X. Wang, S. Fu, S. Zhou, J. Shen, A. Gao, Intercalation reaction of molybdenum trioxide cathode for rechargeable ion batteries. Batter. Supercaps 6, e202200569–e202200592 (2023)

    CAS  Google Scholar 

  14. F. Huang, H. Liu, X. Li, S. Wang, Enhancing hole injection by processing ITO through MoO3 and self-assem- bled monolayer hybrid modification for solution-processed hole transport lay‐er-free OLEDs. J. Chem. Eng. 427, 131356 (2022)

    CAS  Google Scholar 

  15. K. Prashant, L.N. Bankar, J. Khandare, D. Late, M.A. More, Enhanced field emission performance of MoO3 nanorods and MoO3-rGO nanocomposite. ChemistrySelect 2, 10912–10917 (2017)

    Google Scholar 

  16. W. Hao Lin, Irfan, H.N. Xia, Y. Wu, C.W. Gao, Tang, MoOx back contact for CdS/CdTe thin film solar cells: Preparation, device characteristics, and stability. Sol. Energy Mater. Sol. Cells 99, 349–355 (2012)

    Google Scholar 

  17. N.R. Paudel, C. Xiao, Y. Yan, CdS/CdTe thin-film solar cells with Cu-free transition metal oxide/Au back contacts. Prog. Photovoltaics. 23, 437–442 (2015)

    CAS  Google Scholar 

  18. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    CAS  Google Scholar 

  19. R.S. Hall, D. Lamb, S.J.C. Irvine, Back contacts materials used in thin film CdTe solar cells—a review  Energy Sci. Eng. 9, 606–632 (2021)

    CAS  Google Scholar 

  20. N.R. Paudel, A.D. Compaan, Y. Yan, Sputtered CdS/CdTe solar cells with MoO3–x/Au back contacts. Sol. Energy Mater Sol. Cells 113, 26–30 (2013)

    CAS  Google Scholar 

  21. S. Kamble, A. Sikora, S. Deshmukh, G. Chavan, V. Karande, S. Pawar, N. Tarwal, L. Deshmukh, Quaternary Co1–x–yZnxCdyS thin films: a facile synthesis approach and its aptness for the applications in micro-devices. Mater. Lett. 167, 61–64 (2016)

    CAS  Google Scholar 

  22. G. Chavan, S. Pawar, V. Prakshale, S. Pawar, S. Ezugwu, N. Chaure, S. Kamble, N. Maldar, L. Deshmukh, Direct synthesis of quaternary cd(Zn, S)Se thin films: effects of composition. Mater. Sci. Semicond. Process. 71, 447–453 (2017)

    CAS  Google Scholar 

  23. S. Chowdhury, G. Chavan, S. Kim, D. Oh, Y. Kim, E.C. Cho, Y. Cho, J. Yi, Analysis of passivation property using thin Al2O3 layer and simulation for realization of high-efficiency TOPCon cell. Infrared Phys. Technol. 110, 103436–103444 (2020)

    CAS  Google Scholar 

  24. M. Dhanasankar, K.K. Purushothaman, G. Muralidharan, Optical, structural and electrochromic studies of molybdenum oxide thin films with nano rod structure. Solid State Sci. 12, 246–251 (2010)

    CAS  Google Scholar 

  25. T.S. Sian, G.B. Reddy, Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films. Sol. Energy Mater Sol. Cells. 82, 375–386 (2004)

    CAS  Google Scholar 

  26. M. Diskus, O. Nilsen, H. Fjellvåg, S. Diplas, P. Beato, C. Harvey, E. van Schrojenstein Lantman, B.M. Weckhuysen, Combination of characterization techniques for atomic layer deposition MoO3 coatings: from the amorphous to the orthorhombic α-MoO3 crystalline phase. J. Vac Sci. Technol. A: Vac Surf. films 30, 01A107 (2012)

    Google Scholar 

  27. B. Hui, G. Li, X. Zhao, L. Wang, D. Wu, J. Li, B.K. Via, h-MoO3 microrods grown on wood substrates through a low-temperature hydrothermal route and their optical properties. J. Mater. Sci. : Mater. Electron. 28, 3264–3271 (2017)

    CAS  Google Scholar 

  28. E.M. Gaigneaux, K.I. Fukui, Y. Iwasawa, Morphology of crystalline α-MoO3 thin films spin-coated on Si (100). Thin Solid Films 374, 49–58 (2000)

    CAS  Google Scholar 

  29. A. Boukhachem, M. Mokhtari, N. Benameur, A. Ziouche, M. Martínez, P. Petkova, M. Ghamnia, A. Cobo, M. Zergoug, M. Amlouk, Structural optical magnetic properties of Co doped α-MoO3 sprayed thin films. Sens. Actuators A: Phys. 253, 198–209 (2017)

    CAS  Google Scholar 

  30. E.I. Altman, T. Droubay, S.A. Chambers, Growth of MoO3 films by oxygen plasma assisted molecular beam epitaxy. Thin Solid Films. 414, 205–211 (2002)

    CAS  Google Scholar 

  31. T. Ivanova, M. Surtchev, K. Gesheva, Investigation of CVD molybdenum oxide films. Mater. Lett. 53, 250–257 (2002)

    CAS  Google Scholar 

  32. F. Chandoul, A. Boukhachem, F. Hosni, H. Moussa, M.S. Fayache, M. Amlouk, R. Schneider, Change of the properties of nanostructured MoO3 thin films using gamma-ray irradiation. Ceram. Int. 44, 12483–12490 (2018)

    CAS  Google Scholar 

  33. A. Qualx - Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD. J. Appl. Cryst. 48, 598–603 (2015)

    Google Scholar 

  34. N. Doebelin, R. Kleeberg, Profex: a graphical user interface for the rietveld refinement program BGMN. J. Appl. Crystallogr. 48(Pt 5), 1573–1580 (2015)

    CAS  Google Scholar 

  35. X. Fan, G. Fang, P. Qin, N. Sun, N. Liu, Q. Zheng, F. Cheng, L. Yuan, X. Zhao, Deposition temperature effect of RF magnetron sputtered molybdenum oxide films on the power conversion efficiency of bulk-heterojunction solar cells. J. Phys. D: Appl. Phys. 44, 45101–45106 (2011)

    Google Scholar 

  36. S.A. Khalate, R.S. Kate, H.M. Pathan, R.J. Deokate, Structural and electrochemical properties of spray deposited molybdenum trioxide (α-MoO3) thin films. J. Solid State Chem. 21, 2737–2746 (2017)

    CAS  Google Scholar 

  37. O. Kamoun, A. Boukhachem, M. Amlouk, S. Ammar, Physical study of Eu doped MoO3 thin films. J. Alloys Compd. 687, 595–603 (2016)

    CAS  Google Scholar 

  38. S. COD database - Gražulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, Crystallography open database—an open-access collection of crystal structures. J. Appl. Cryst. 42, 726–729 (2009)

    Google Scholar 

  39. D.P. Sali, N.B. Chaure, Investigation of the effect of annealing conditions on electrodeposited CdTe thin films from non–aqueous bath. Appl. Phys. A 127(1), 1–8 (2021)

    Google Scholar 

  40. A. Klinbumrung, T. Thongtem, S. Thongtem, Characterization of orthorhombic α-MoO3 microplates produced by a microwave plasma process. J. Nanomater. 2012, 1–5 (2012)

    Google Scholar 

  41. V. Cruz–San, M. Martín, P.E. Morales–Luna, M. García–Tinoco, M.A. Pérez–González, H. Arvizu, M. Crotte–Ledesma, S.A. Ponce–Mosso, Tomás, Chromogenic MoO3 thin films: thermo-, photo-, and electrochromic response to working pressure variation in rf reactive magnetron sputtering. J. Mater. Sci. : Mater. Electron. 29, 15486–15495 (2018)

    Google Scholar 

  42. Y. O de Melo, A. González, P. Climent-Font, A. Galán, M. Ruediger, C. Sánchez, G. Calvo-Mola, Santana, V. Torres-Costa, Optical and electrical properties of MoO2 and MoO3 thin films prepared from the chemically driven isothermal close space vapor transport technique. J. Phys. Condens. Matter. 31, 295703–295712 (2019)

    Google Scholar 

  43. S.-H. Lee, M.J. Seong, C.E. Tracy, A. Mascarenhas, J.R. Pitts, S.K. Deb, Raman spectroscopic studies of electrochromic a-MoO3 thin films. Solid State Ion 147, 129–133 (2002)

    CAS  Google Scholar 

  44. J.Z. Ou, J.L. Campbell, D. Yao, W. Wlodarski, K. Kalantar-Zadeh, In situ Raman spectroscopy of H2 gas interaction with layered MoO3. J. Phys. Chem. C 115, 10757–10763 (2020)

    Google Scholar 

  45. R. Ji, J. Cheng, X. Yang, J. Yu, L. Li, Enhanced charge carrier transport in spray-cast organic solar cells using solution processed MoO3 micro arrays. RSC Adv. 7, 3059–3065 (2012)

    Google Scholar 

  46. C. Yang, Q. Xiang, X. Li, Y. Xu, X. Wang, X. Xie, C. Li, H. Wang, L. Wang, MoO3 nanoplates: a high-capacity and long-life anode material for sodium-ion batteries. J. Mater. Sci. 55, 12053–12064 (2011)

    Google Scholar 

  47. Y.J. Lee, W.T. Nichols, D.-G. Kim, Y.D. Kim, Chemical vapour transport synthesis and optical characterization of MoO3 thin films. J. Phys. D: Appl. Phys. 42, 115419–115424 (2009)

    Google Scholar 

  48. S. Jo, Y.-W. Lee, J. Hong, J.I. Sohn, Simple and facile fabrication of anion-vacancy-induced MoO3–X catalysts for enhanced hydrogen evolution activity. Catalysts 10(10), 1180–1188 (2020)

    CAS  Google Scholar 

  49. S. Kumar Singh Patel, K. Dewangan, S. Kumar Srivastav, N. Kumar Verma, P. Jena, A. Kumar Singh, N.S. Gajbhiye, Synthesis of α-MoO3 nanofibers for enhanced field-emission properties. Adv. Mater. Lett. 9, 585–589 (2018)

    Google Scholar 

  50. C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, B.P. Rand, Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells. ACS Appl. Mater. Interfaces 3, 3244–3247 (2011)

    CAS  Google Scholar 

  51. R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, C. Sanjeeviraja, Characterization on electron beam evaporated a-MoO3 thin films by the influence of substrate temperature. Curr. Appl. Phys. 7, 51–59 (2007)

    Google Scholar 

  52. M. Balaji, J. Chandrasekaran, M. Raja, Role of substrate temperature on MoO3 thin films by the JNS pyrolysis technique for P–N junction diode application. Mater. Sci. Semicond. Process. 43, 104–113 (2016)

    CAS  Google Scholar 

  53. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983)

    CAS  Google Scholar 

  54. S. Bhatia, A. Khanna, R.K. Jain, Structure-property correlations in molybdenum trioxide thin films and nanoparticles. Mater. Res. Express. 6, 086409–086426 (2019)

    CAS  Google Scholar 

  55. C. Cetinkaya, E. Cokduygulular, Y. Ozen, I. Candan, B. Kınacı, S. Ozcelik, Determination of surface morphology and electrical properties of MoO3 layer deposited on GaAs substrate with RF magnetron sputtering. J. Mater. Sci. : Mater. Electron. 32, 12330–13339 (2021)

    CAS  Google Scholar 

  56. S.V. Desarada, P.U. Londhe, S. Chaure, N.B. Chaure, CuInGaSe2 (CIGS) thin film on flexible Mo substrates from non-aqueous one-step electrodeposition process. J. Mater. Sci. : Mater. Electron. 33, 203–216 (2022)

    CAS  Google Scholar 

  57. M. Szkoda, K. Trzciński, M. Łapiński, A. Lisowska-Oleksiak, Photoinduced K+ intercalation into MoO3/FTO photoanode—the impact on the photoelectrochemical performance. Electrocatalysis 11, 111–120 (2020)

    CAS  Google Scholar 

  58. S.M. Sze, K.K. Ng, Physics of semiconductor devices, 3rd edn. (Wiley, Hoboken, 2006)

    Google Scholar 

  59. Z. Dong, D. Ding, T. Li, C. Ning, Black Si-doped TiO2 nanotube photoanode for high-efficiency photoelectrochemical water splitting. RSC Adv. 8, 5652–5660 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support received from the ISRO-UoP cell and MJPRF.

Author information

Authors and Affiliations

Authors

Contributions

DPS: formal analysis, methodology, investigation, data curation, writing—original draft, LNK: methodology, writing—original draft, formal analysis, SVD: Rietveld analysis, formal analysis, writing—original draft, ASU: formal analysis, writing—original draft, PUL: formal analysis, visualization writing—original draft, SMS: formal analysis, writing—original draft, NBC: supervision, conceptualisation, project administration, writing—review and editing.

Corresponding author

Correspondence to Nandu B. Chaure.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sali, D.P., Khandare, L.N., Desarada, S.V. et al. Role of thermal heat-treatment to achieve a highly polycrystalline and compact α-MoO3 thin films. J Mater Sci: Mater Electron 35, 53 (2024). https://doi.org/10.1007/s10854-023-11805-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11805-9

Navigation