Skip to main content
Log in

Electrostatic, linearity and analogue/RF performance analysis of single heterojunction GaAs HEMT

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study focuses on the Electrostatic, linearity, and analogue/RF parameters of a single heterojunction AlGaAs/GaAs-based high electron mobility transistor (HEMT). The device performance for multiple biases has been evaluated using different figures of merit. The Electrostatic, linearity, and analogue/RF performance have been analyzed from the on-wafer DC and RF measurements. A high ON-state current (31.72 mA) and a smaller sub-threshold swing (82.2 mV/dec) have been achieved. Parameters relating to linearities, such as gm, gm2, gm3, VIP2, VIP3, IIP3, 1-dB compression point, IMD3, THD and analogue/RF parameters like TGF, gds, Av, Cgs, Cgd, Cgg, fT and fmax have been analyzed under different Vds, and excellent results have been obtained for all the bias voltages. Higher values of gm, VIP2, VIP3, IIP3, 1-dB compression point, and lower values of gm2, gm3, IMD3, and THD have been obtained. The RF parameters have likewise yielded significant results in a similar manner. The device is revealed to have remarkable linearity and amplifying ability upon investigating the parameters as mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the authors.

References

  1. B. Razavi, RF microelectronics (Prentice-Hall, Hoboken, 1998)

    Google Scholar 

  2. D. Zhang, Z. Li, InP/ZnS quantum dots functionalized AlGaAs/InGaAs open gate high electron mobility transistor. J. Mater. Sci.: Mater. Electron. 29, 10663–10668 (2018). https://doi.org/10.1007/s10854-018-9134-9

    Article  Google Scholar 

  3. M.A. Alim, M.M. Ali, A.A. Rezazadeh, Nonlinear distortion analysis for single heterojunction GaAs HEMT with frequency and temperature. Semicond. Sci. Technol. 33(7), 075002 (2018)

    Article  Google Scholar 

  4. M.A. Alim, M.M. Ali, A.A. Rezazadeh, Investigation of nonlinear distortion in double heterojunction GaAs based pHEMT subject to frequency and temperature. Solid State Electron. 146(April), 44–49 (2018). https://doi.org/10.1016/j.sse.2018.05.008

    Article  CAS  Google Scholar 

  5. S. Prasad, A.K. Dwivedi, A. Islam, Characterization of AlGaN/GaN and AlGaN/AlN/GaN HEMTs in terms of mobility and subthreshold slope. J. Comput. Electron. 15(1), 172 (2016). https://doi.org/10.1007/s10825-015-0751-8

    Article  CAS  Google Scholar 

  6. A. Sengupta, A. Islam, Comparative analysis of AlGaN/GaN high electron mobility transistor with sapphire and 4H-SiC substrate. Microsyst. Technol. 25(5), 1927 (2019). https://doi.org/10.1007/s00542-018-3903-5

    Article  CAS  Google Scholar 

  7. F.A. Fatah et al., Potential of enhancement mode in 0.65 Ga 0.35 As/InAs/In 0.65 Ga 0.35 as HEMTs for using in high-speed and low-power logic applications. ECS J. Solid State Sci. Technol. (2015). https://doi.org/10.1149/2.0171512jss

    Article  Google Scholar 

  8. J. Ajayan, D. Nirmal, 22 nm In0:75Ga0:25As channel-based HEMTs on InP/GaAs substrates for future THz applications. J. Semicond. 38(4), 0–6 (2017). https://doi.org/10.1088/1674-4926/38/4/044001

    Article  CAS  Google Scholar 

  9. P. Sharma, S. Singh, S. Gupta et al., Modeling linearity and ambipolarity in GFETs on different dielectrics for communication applications. J. Mater. Sci.: Mater. Electron. 29, 2883–2889 (2018). https://doi.org/10.1007/s10854-017-8218-2

    Article  CAS  Google Scholar 

  10. G.P. Rao, T.R. Lenka, N.E.I. Boukortt et al., Investigation of performance enhancement of a recessed gate field-plated AlGaN/AlN/GaN nano-HEMT on β-Ga2O3 substrate with variation of AlN spacer layer thickness. J. Mater. Sci.: Mater. Electron. 34, 1442 (2023). https://doi.org/10.1007/s10854-023-10867-z

    Article  CAS  Google Scholar 

  11. A.K. Singh, M.R. Tripathy, P.K. Singh, K. Baral, S. Chander, S. Jit, Deep insight into DC/RF and linearity parameters of a novel back gated ferroelectric TFET on SELBOX substrate for ultra low power applications. Silicon 13(11), 3853–3863 (2021). https://doi.org/10.1007/s12633-020-00672-2

    Article  CAS  Google Scholar 

  12. D. Sharma, S.K. Vishvakarma, Analyses of DC and analog/RF performances for short channel quadruple-gate gate-all-around MOSFET. Microelectron. J. 46(8), 731–739 (2015). https://doi.org/10.1016/j.mejo.2015.05.008

    Article  CAS  Google Scholar 

  13. A. Es-Sakhi, M.H. Chowdhury, Analytical model to estimate the subthreshold swing of SOI FinFET. Proc. IEEE Int. Conf. Electron. Circuits, Syst. (2013). https://doi.org/10.1109/ICECS.2013.6815343

    Article  Google Scholar 

  14. C. Sandow, J. Knoch, C. Urban, Q.T. Zhao, S. Mantl, Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors. Solid State Electron. 53(10), 1126–1129 (2009). https://doi.org/10.1016/j.sse.2009.05.009

    Article  CAS  Google Scholar 

  15. G. Ghibaudoç, G. Pananakakis, Analytical expressions for subthreshold swing in FDSOI MOS structures. Solid State Electron. 149, 57–61 (2018). https://doi.org/10.1016/j.sse.2018.08.011

    Article  CAS  Google Scholar 

  16. M. Nawaz, S. Habibi, H.Q. Zheng, K. Radhakrishnan, K.Y. Lee, G.I. Ng, Design and characterization of AlGaAs/InGaAs/GaAs-based pHEMT device. Microw. Opt. Technol. Lett. 17(1), 50–53 (1998)

    Article  Google Scholar 

  17. S. Khandelwal, S. Member, T.A. Fjeldly, Analysis of drain-current nonlinearity using surface-potential-based model in GaAs pHEMTs. EEE Trans. Microw. Theory Tech. 61(9), 3265–3270 (2013)

    Article  Google Scholar 

  18. C. Zhang, H. Wang, J. Zhang, G. Du, Experiment and simulation of the nonlinear and transient responses of GaAs PHEMT Injected with microwave pulses. IEEE Trans. Electromagn. Compat. 57(5), 1132–1138 (2015)

    Article  Google Scholar 

  19. J. Liu, Y. Zhou, J. Zhu, Y. Cai, K.M. Lau, K.J. Chen, DC and RF characteristics of AlGaN/GaN/InGaN/GaN double-heterojunction HEMTs. IEEE Trans. Electron. Devices 54(1), 2 (2007). https://doi.org/10.1109/TED.2006.887045

    Article  CAS  Google Scholar 

  20. J. Du et al., Study on transconductance nonlinearity of AlGaN/GaN HEMTs considering acceptor-like traps in barrier layer under the gate. Solid State Electron. 115, 60–64 (2016). https://doi.org/10.1016/j.sse.2015.10.008

    Article  CAS  Google Scholar 

  21. M.A. Alim, A.A. Rezazadeh, Study of third-order intercepts and nonlinear distortion level for S-H GaAs HEMTs. Semicond. Sci. Technol. 35(8), 085001 (2020). https://doi.org/10.1088/1361-6641/ab8c53

    Article  CAS  Google Scholar 

  22. M.A. Alim, J. Naima, A.A. Rezazadeh, Thermal sensitivity of microwave pseudomorphic high-electron-mobility transistor performance: pre and post multilayer technology. Phys. Status Solidi Appl. Mater. Sci. 218(18), 1–8 (2021). https://doi.org/10.1002/pssa.202100290

    Article  CAS  Google Scholar 

  23. H. Li, Y. Li, H. Jiang et al., Characteristic analysis of the MoS2/SiO2 interface field-effect transistor with varying MoS2 layers. J. Mater. Sci.: Mater. Electron. 34, 427 (2023). https://doi.org/10.1007/s10854-023-09869-8

    Article  CAS  Google Scholar 

  24. Y.C. Lin, E.Y. Chang, H. Yamaguchi, W.C. Wu, C.Y. Chang, A δ-doped InGaP/InGaAs pHEMT with different doping profiles for device-linearity improvement. IEEE Trans. Electron. Devices 54(7), 1617–1625 (2007). https://doi.org/10.1109/TED.2007.899398

    Article  CAS  Google Scholar 

  25. N.A. Kumari, P. Prithvi, Device and circuit-level performance comparison of GAA nanosheet FET with varied geometrical parameters. Microelectron. J. 125, 105432 (2022). https://doi.org/10.1016/J.MEJO.2022.105432

    Article  CAS  Google Scholar 

  26. P. Ghosh, S. Haldar, R.S. Gupta, M. Gupta, An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Trans. Electron. Devices 59(12), 3263–3268 (2012). https://doi.org/10.1109/TED.2012.2219537

    Article  Google Scholar 

  27. S.K. Mohapatra, K.P. Pradhan, L. Artola, P.K. Sahu, Estimation of analog/RF figures-of-merit using device design engineering in gate stack double gate MOSFET. Mater. Sci.Semicond Process 31, 455–462 (2015). https://doi.org/10.1016/j.mssp.2014.12.026

    Article  CAS  Google Scholar 

  28. S.K. Mohapatra, K.P. Pradhan, P.K. Sahu, M.R. Kumar, The performance measure of GS-DG MOSFET: an impact of metal gate work function. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(2), 025002 (2014). https://doi.org/10.1088/2043-6262/5/2/025002

    Article  CAS  Google Scholar 

  29. L.F. Tiemeijer et al., RF distortion characterisation of sub-micron CMOS. Eur. Solid-State Device Res. Conf. (2000). https://doi.org/10.1109/ESSDERC.2000.194815

    Article  Google Scholar 

  30. A. Baidya, T.R. Lenka, S. Baishya, Linear distortion analysis of 3D double gate junctionless transistor with High-K dielectrics and gate metals. Silicon 13(9), 3113–3120 (2021). https://doi.org/10.1007/s12633-020-00669-x

    Article  CAS  Google Scholar 

  31. M.A. Alim, A. Jarndal, C. Gaquiere et al., A study of DC and RF transconductance for different technologies of HEMT at low and high temperatures. J Mater Sci: Mater Electron 34, 892 (2023). https://doi.org/10.1007/s10854-023-10176-5

    Article  CAS  Google Scholar 

  32. R. Salazar, A. Ortiz-Conde, F.J. García-Sánchez, C.S. Ho, J.J. Liou, Evaluating MOSFET harmonic distortion by successive integration of the I-V characteristics. Solid State Electron 52(7), 1092–1098 (2008). https://doi.org/10.1016/j.sse.2008.03.018

    Article  CAS  Google Scholar 

  33. Q. Cheng, K. Shariar, S. Khandelwal, Y. Zeng, DC and RF performances of InAs FinFET and GAA MOSFET on insulator. Solid State Electron 158(May), 11–15 (2019). https://doi.org/10.1016/j.sse.2019.05.001

    Article  CAS  Google Scholar 

  34. G. Caddemi, N.D. Crupi, Temperature effects on DC and small signal RF performance of AlGaAs/GaAs HEMTs. Microelectron. Reliab. 46(1), 169–173 (2006). https://doi.org/10.1016/j.microrel.2005.05.003

    Article  Google Scholar 

  35. M.A. Alim, A.A. Rezazadeh, C. Gaquiere, Multibias and thermal behavior of microwave GaN and GaAs based HEMTs. Solid State Electron. 126, 67–74 (2016). https://doi.org/10.1016/j.sse.2016.09.013

    Article  CAS  Google Scholar 

  36. M.A. Alim, A.A. Rezazadeh, C. Gaquiere, Small signal model parameters analysis of GaN and GaAs based HEMTs over temperature for microwave applications. Solid State Electron. 119, 11–18 (2016). https://doi.org/10.1016/j.sse.2016.02.002

    Article  CAS  Google Scholar 

  37. T. Wang, L. Lou, C. Lee, A junctionless gate-all-around silicon nanowire FET of high linearity and its potential applications. IEEE Electron Device Lett 34(4), 478–480 (2013). https://doi.org/10.1109/LED.2013.2244056

    Article  CAS  Google Scholar 

  38. F. Schwierz, J.J. Liou, Modern microwave transistors: theory, design, and performance (Wiley, Hoboken, 2002)

    Google Scholar 

  39. A. Kumar, S. Manas, R. Tripathy, K. Baral, P. Kumar, S. Satyabrata, Impact of interface trap charges on device level performances of a lateral/vertical gate stacked Ge/Si TFET-on-SELBOX-substrate. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03869-9

    Article  Google Scholar 

  40. V.D. Wangkheirakpam, B. Bhowmick, P.D. Pukhrambam, Linearity performance and intermodulation distortion analysis of D-MOS vertical TFET. Appl Phys A Mater Sci Process 127(5), 340 (2021). https://doi.org/10.1007/s00339-021-04496-8

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the partial financial support from “The ICT Division, Government of the People’s Republic of Bangladesh” for the ICT Fellowship (2020–2021) awarded to Jannatul Naima with Grant Number: 56.00.0000.028.33.002.21-232.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JN and MAA; methodology, JN and MAA; validation, MAA; investigation, JN and MAA; writing—original draft preparation, JN; writing—review and editing, MAA; supervision, MAA. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mohammad A. Alim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naima, J., Alim, M.A. Electrostatic, linearity and analogue/RF performance analysis of single heterojunction GaAs HEMT. J Mater Sci: Mater Electron 35, 65 (2024). https://doi.org/10.1007/s10854-023-11803-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11803-x

Navigation