Skip to main content
Log in

Investigation of dielectric properties, impedance and AC conductivity of Sm2O3@SiO2 core shell nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we design and fabricate Sm2O3@SiO2 core–shell nanocomposites to examine their dielectric behavior under varying frequencies and temperatures. Powder X-ray diffraction and Fourier Transform-Infrared analyses confirmed the phase composition and functional groups, respectively, while Transmission Electron Microscopy analysis indicated the formation of core–shell structure with shell thickness of approximately 34 nm. The M-H hysteresis loop revealed a soft paramagnetic nature at room temperature. X-ray photoemission spectroscopy confirmed the chemical states and cation distribution in the material. The dielectric constant and dielectric loss exhibited an increasing trend when temperature was increased from 323 and 673 K in the observed frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. X. Zhao, Y. Bi, J. Xie, H. Jing, S. Sun, S. Song, Enhanced dielectric, energy storage and tensile properties of BaTiO3–NH2/low-density polyethylene nanocomposites with POE-GMA as interfacial modifier. Polym. Test. 95, 107094–107104 (2021)

    CAS  Google Scholar 

  2. C.V. Ramana, V.V. Atuchin, L.D. Pokrovsky, U. Becker, C.M. Julien, Structure and chemical properties of molybdenum oxide thin films. J. Vac. Sci. Technol. A 25, 1166–1174 (2007)

    CAS  Google Scholar 

  3. C.V. Ramana, S. Utsunomiya, R.C. Ewing, U. Becker, V.V. Atuchin, VSh. Aliev, V.N. Kruchinin, Spectroscopic ellipsometry characterization of the optical properties and thermal stability of ZrO2 films made by ion-beam assisted deposition. Appl. Phys. Lett. 92, 011917–011921 (2008)

    Google Scholar 

  4. V.H. Mudavakkat, V.V. Atuchin, V.N. Kruchinin, A. Kayani, C.V. Ramana, Structure, morphology and optical properties of nanocrystalline yttrium oxide (Y2O3) thin films. Opt. Mater. 34, 893–900 (2012)

    CAS  Google Scholar 

  5. B.S. Sengar, V. Garg, A. Kumar, V. Awasthi, S. Kumar, V.V. Atuchin, S. Mukherjee, Band alignment of Cd-free (Zn, Mg)O layer with Cu2ZnSn(S, Se)4 and its effect on the photovoltaic properties. Opt. Mater. 84, 748–756 (2018)

    CAS  Google Scholar 

  6. C. Patel, B. Mandal, R.G. Jadhav, T. Ghosh, M. Dubey, A.K. Das, M.T. Htay, V.V. Atuchin, S. Mukherjee, S, N Co-doped carbon dot-functionalized WO3 nanostructures for NO2 and H2S detection. ACS Appl. Nano Mater. 5, 2492–2500 (2022)

    CAS  Google Scholar 

  7. J. Xie, X. Zhao, S. Sun, S. Song, Effect of shell phase composition on the dielectric property and energy density of core-shell structured BaTiO3 particles modified poly (vinylidene fluoride) nanocomposites. J. Appl. Polym. Sci. 138, 50486–50497 (2021)

    CAS  Google Scholar 

  8. S. Vaidya, A. Kar, A. Patra, A.K. Ganguli, Core-shell (CS) nanostructures and their application based on magnetic and optical properties. Rev. Nanosci. Nanotechnol 2, 106–126 (2023)

    Google Scholar 

  9. D.E. Abulyaziedand, H.M. Abomostafa, Dielectric and mechanical properties of nickel silica core-shell reinforced PMMA nanocomposites. J. Compos. Mater. 55, 2841–2855 (2021)

    Google Scholar 

  10. S. Sudha, M. Peer Mohamed, G. Vinitha, C.R.T. Kumari, P. Sangeetha, M. Lydia Caroline, Synthesis, growth and third order nonlinear optical studies of a rhombohedral crystal: sodium tetraborate pentahydrate. Chin. J. Phys. 57, 211–225 (2019)

    CAS  Google Scholar 

  11. F. Talalaev, S. Luchkin, A.V. Mumyatov, I.S. Zhidkov, M.V. Lobanov, N.A. Emelianov, S.D. Babenko, E.Z. Kurmaev, S.M. Aldoshin, P.A. Troshin, High-performance organic field-effect transistors using rare earth metal oxides as dielectrics. ACS Appl. Electron. Mater. 5, 2000–2006 (2023)

    CAS  Google Scholar 

  12. P. Rodionovs, J. Grabis, ZnO photocatalysts modified with Eu2O3 and Sm2O3. Key Eng. Mater. 850, 35–40 (2020)

    Google Scholar 

  13. H. Kizilta, T. Tekin, D. Tekin, Synthesis, characterization of Fe3O4@SiO2@ZnO composite with a core-shell structure and evaluation of its photocatalytic activity. J. Environ. Chem. Eng. 8, 104160–104186 (2020)

    Google Scholar 

  14. M. Salavati-Niasari, J. Javidi, Synthesis of hollow SiO2 nanoparticles from Dy2O3@SiO2 core-shell nanocomposites via a recyclable sonochemical method. J. Clust. Sci. 23, 1019–1028 (2012)

    CAS  Google Scholar 

  15. D. He, Y. Wang, S. Song, S. Liu, Y. Luo, Y. Deng, Polymer-based nanocomposites employing Bi2S3@SiO2 nanorods for high dielectric performance: understanding the role of interfacial polarization in semiconductor-insulator core-shell nanostructure. Compos. Sci. Technol. 151, 25–33 (2017)

    CAS  Google Scholar 

  16. D. Bharatiya, K. Santhosh Kumar, R. Seelaboyina, P. Paik, A detailed study on the dielectric properties of CCTO@SiO2 core-shell nanoparticles: role of SiO2-NH2 shell over CCTO core surface. J. Solid State Chem. 227, 346–355 (2019)

    Google Scholar 

  17. B. Sun, H. Li, L. Wei, P. Chen, Hydrothermal synthesis and resistive switching behavior of WO3/CoWO4 core–shell nanowires. Cryst. Eng. Comm. 16, 9891–9896 (2014)

    CAS  Google Scholar 

  18. G. Ren, Su. Hongjiu, S. Wang, The combined method to synthesis silica nanoparticle by Stöber process. J. Sol-Gel Sci. Technol. 96, 108–120 (2020)

    CAS  Google Scholar 

  19. P.D.K. Nezhad, M.F. Bekheet, N. Bonmassar, A. Gili, F. Kamutzki, A. Gurlo, A. Doran, S. Schwarz, J. Bernardi, S. Praetz, A. Niaei, A. Farzi, S. Penner, Elucidating the role of earth alkaline doping in perovskite-based methane dry reforming catalysts. Catal. Sci. Technol. 12, 1229–1245 (2022)

    Google Scholar 

  20. H.M. Zaid, R.A. Al-Bayati, A.A. Khadom, Synthesis and supercapacitor performance of polyaniline-titanium dioxide-samarium oxide (PANI/TiO2-Sm2O3) nanocomposite. Chem. Papers 76, 1401–1412 (2022)

    Google Scholar 

  21. T.D. Schladt, K. Koll, S. Prufer, H. Bauer, F. Natalio, O. Dumele, R. Raidoo, S. Weber, U. Wolfrum, L.M. Schreiber, M.P. Radsak, H. Schild, W. Tremel, Multifunctional superparamagnetic MnO@SiO2 core/shell nanoparticles and their application for optical and magnetic resonance imaging. J. Mater. Chem. 22, 9253–9263 (2012)

    CAS  Google Scholar 

  22. H. Haghjoo, F.S. Sangsefidi, M.S. Niasari, Study on the optical, magnetic and photocatalytic activities of the synthesized Mn2O3-SiO2 nanocomposites by microwave method”. J. Mol. Liq. 242, 779–788 (2017)

    CAS  Google Scholar 

  23. Y.G. Denisenko, M.S. Molokeev, A.S. Oreshonkov, A.S. Krylov, A.S. Aleksandrovsky, N.O. Azarapin, O.V. Andreev, I.A. Razumkova, V.V. Atuchin, C. Structure, Vibrational, spectroscopic and thermochemical properties of double sulfate crystalline hydrate [CsEu(H2O)3 (SO4)2]•H2O and its thermal dehydration product CsEu(SO4)2. Crystals 11, 1027–1052 (2021)

    CAS  Google Scholar 

  24. N.N. Golovnev, L.A. Solovyov, M.K. Lesnikov, S.N. Vereshchagin, V.V. Atuchin, Hydrated and anhydrous cobalt (II) barbiturates: crystal structures, spectroscopic and thermal properties. Inorg. Chim. Acta 467, 39–45 (2017)

    CAS  Google Scholar 

  25. N.N. Golovnev, M.S. Molokeev, S.N. Vereshchagin, V.V. Atuchin, M.Y. Sidorenko, M.S. Dmitrushkov, Crystal structure and properties of the precursor[Ni(H2O)6](HTBA)2 2H2O and the complexes M(HTBA)2(H2O)2 (M = Ni Co, Fe). Polyhedron 70, 71–76 (2014)

    CAS  Google Scholar 

  26. S. Divya, S. Cathrin Lims, M. Manivannan, R. Robert, S. Jerome Das, M. Jose, Impact of amorphous SiO2 as shell material on superparamagnetic Fe3O4 nanoparticles and investigation of temperature and frequency dependent dielectric properties. J. Alloys Compd. 919, 165751–165762 (2022)

    CAS  Google Scholar 

  27. Q. Chen, Q. Ma, Mixed samarium valences effect in Faraday rotation glasses: structure, optical, magnetic and magneto-optical properties. J. Non Cryst. Solids 530, 119803–119815 (2020)

    CAS  Google Scholar 

  28. Wu. Wei, J. Zhang, P. Cao, J. Dong, H. Ding, Synthesis of Sm–Co nanoparticles by sol–gel method. Mod. Phys. Lett. B 32, 34–36 (2018)

    Google Scholar 

  29. E. Juwita, F.A. Sulistiani, M.Y. Darmawan, N.I. Istiqomah, E. Suharyadi, Microstructural, optical and magnetic properties and specific absorption rate of bismuth ferrite/SiO2 nanoparticles. Mater. Res. Express 9, 076101–076112 (2022)

    Google Scholar 

  30. X. Liu, Y. Huang, Na. Zhang, S. Zhou, Synthesis of CoNi/SiO2 core-shell nanoparticles decorated reduced graphene oxide nanosheets for enhanced electromagnetic wave absorption properties. Ceram. Int. 44, 22189–22197 (2018)

    CAS  Google Scholar 

  31. Q. Chen, Q. Ma, Mixed samarium valences effect in Faraday rotation glasses: structure, optical, magnetic and magneto-optical properties. J. Non-Cryst. Solids 530, 119803–119815 (2020)

    CAS  Google Scholar 

  32. Y. Wang, W. Zhang, C. Luo, Wu. Xinming, G. Yan, Superparamagnetic FeCo@SnO2 nanoparticles on graphene polyaniline: synthesis and enhanced electromagnetic wave absorption properties. Ceram. Int. 42, 12496–12502 (2016)

    CAS  Google Scholar 

  33. D. Greene, R. Serrano-Garcia, J. Govan, Y.K. Gunko, Synthesis characterization and photocatalytic studies of cobalt ferrite-silica-titania nanocomposites. Nanomaterials 4, 331–343 (2014)

    Google Scholar 

  34. S.Z. Mohammadi, Z. Safari, N. Madady, A novel Co3O4@SiO2 magnetic nanoparticle-nylon 6 for high efficient elimination of Pb(II) ions from wastewater. Appl. Surf. Sci. 514, 145873–145885 (2020)

    CAS  Google Scholar 

  35. H. Kiziltaş, T. Tekin, D. Tekin, Preparation and characterization of recyclable Fe3O4@SiO2@TiO2 composite photocatalyst and investigation of the photocatalytic activity. Chem. Eng. Commun. 208, 1041–1053 (2020)

    Google Scholar 

  36. S. Sobhani, Z.M. Falatooni, M. Honarmand, Synthesis of phosphoric acid supported on magnetic core–shell nanoparticles: a novel recyclable heterogeneous catalyst for Kabachnik–fields reaction in water. RSC Adv. 4, 15797–15807 (2014)

    CAS  Google Scholar 

  37. J. Du, Y. Liu, G. Yao, X. Long, G. Zu, J. Ma, Influence of MnO2 on the sintering behavior and magnetic properties of NiFe2 O4 ferrite ceramics. J. Alloys Compd. 510, 87–91 (2012)

    CAS  Google Scholar 

  38. H. Yu, J. Xu, H. Guo, Y. Li, Z. Liu, Z. Jin, Synergistic effect of rare earth metal Sm oxides and Co1-xS on sheet structure MoS2 for photocatalytic hydrogen evolution. RSC Adv. 7, 56417–56426 (2017)

    CAS  Google Scholar 

  39. R.B. Duarte, S. Damyanova, D.C. de Oliveira, C.M.P. Marques, J.M.C. Bueno, Study of Sm2O3–doped CeO2–Al2O3–supported Pt catalysts for partial CH4 oxidation. Appl. Catal. 399, 134–145 (2011)

    CAS  Google Scholar 

  40. L. Liu, X. Chen, Z. Wang, X. Wang, S. Lin, The removal mechanism and performance of tetrabromobisphenol A with a novel multi-group activated carbon from recycling long-root Eichhorniacrassipes plants. RSC Adv. 9, 24760–24771 (2019)

    CAS  Google Scholar 

  41. D. Tan, Z. Ma, Xu. Beibei, Ye. Dai, G. Ma, M. He, Z. Jin, J. Qiu, Surface passivated silicon nanocrystals with stable luminescence synthesized by femtosecond laser ablation in solution. Phys. Chem. Chem. Phys. 13, 20255–20261 (2011)

    CAS  Google Scholar 

  42. S. Cathrin Lims, S. Divya, K. Kamala Bharathi, G. Viju, S. Jerome Das, M. Jose, Design of NiO@SiO2 core shell nanocomposites and unveiling their dielectric behavior under diverse frequency and temperature regime. Mater. Sci. Eng. B 289, 116235–116245 (2023)

    CAS  Google Scholar 

  43. Z. Wang, W. Zhou, L. Dong, X. Sui, H. Cai, J. Zuo, Q. Chen, Dielectric spectroscopy characterization of relaxation process in Ni/epoxy composites. J. Alloys Compd. 682, 738–745 (2016)

    CAS  Google Scholar 

  44. P. Alaka, R. Govindaraj, Complex dielectric and impedance spectroscopic studies in a multiferroic composite of Bi2Fe4O9-BiFeO3. Cond. Mat. 33, 44–57 (2018)

    Google Scholar 

  45. S. Divya, S. Cathrin Lims, M. Ehthishamul Haque, K. Kamala Bharathi, R. Robert, M. Mathan Kumar, M. Jose, An investigation of temperature and frequency dependent dielectric response of paramagnetic Co3O4@SiO2 core–shell structured nanocomposites. J. Mater. Sci. Mater. Electron. 34, 274–290 (2023)

    CAS  Google Scholar 

  46. P. Barik, A. Bhattacharjee, M. Roj, Preparation, characterization and electrical study of gum Arabic/ZnO nanocomposites. Bull. Mater. Sci. 38, 1609–1616 (2015)

    CAS  Google Scholar 

  47. P.L. Deepti, S.K. Patri, R.N.P. Choudhary, P.S. Das, Dielectric, impedance and modulus spectroscopy of Ta-based layered perovskite. Ph. Transit. 92, 642–656 (2019)

    CAS  Google Scholar 

  48. Z. Raddaoui, S. El Kossi, M. Thamraa Al-shahrani, J. Bourguiba, M.C. Dhahri, H. Belmabrouk, Study of structural, conduction mechanism and dielectric behavior of La0.7Sr0.3Mn0.8Fe0.2O3 manganite. J. Mater. Sci. Mater. Electron. 31, 21732–21746 (2020)

    CAS  Google Scholar 

  49. S.K. Satpathy, N.K. Mohanty, A.K. Behera, B. Behera, Dielectric and electrical properties of 0.5(BiGd0.05Fe0.95O3)–0.5(PbZrO3) composite. Mater. Sci.-Pol. 32, 59–65 (2014)

    CAS  Google Scholar 

  50. T. Lakshmana Rao, M.K. Pradhan, S. Singh, S. Dash, Influence of Zn(II) on the structure, magnetic and dielectric dynamics of nano-LaFeO3. J. Mater. Sci. Mater. Electron. 31, 4542–5455 (2020)

    CAS  Google Scholar 

  51. A. Dhahri, E. Dhahri, E.K. Hlil, Electrical conductivity and dielectric behavior of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 8, 9103–9112 (2018)

    CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank the Board of Management at Sacred Heart College (Autonomous), Tirupattur, India, for granting Fr. Carreno Research Grant [Sanction number: SHC/Fr. Carreno Research Grant/2021/05]. We also thank DST-FIST, Government of India, for providing Powder XRD facility in AKRC, Sacred Heart College (Autonomous), Tirupattur.

Funding

Funding was provided by Fr. Carreno Research Grant (Grant No. SHC/Fr. Carreno Research Grant/2021/05).

Author information

Authors and Affiliations

Authors

Contributions

MJ: Conceptualization; Investigation; Project administration; Supervision; Validation; Writing—review and editing. SD: Investigation; Methodology; Validation; Writing—original draft. SCL: Investigation; Methodology; Data curation; Visualization. TA: Validation; Visualization.

Corresponding author

Correspondence to M. Jose.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya, S., Lims, S.C., Arumanayagam, T. et al. Investigation of dielectric properties, impedance and AC conductivity of Sm2O3@SiO2 core shell nanocomposites. J Mater Sci: Mater Electron 35, 67 (2024). https://doi.org/10.1007/s10854-023-11784-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11784-x

Navigation