Skip to main content
Log in

Cotton fabric electrodes coated by polydopamine-reduced graphene oxide and polypyrrole for flexible supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly conductive reduced graphene oxide (rGO) and pseudo-capacitive polypyrrole (PPy) were integrated together to develop a flexible textile electrode for wearable energy storage. The 2D planar cotton-reduced graphene oxide-polydopamine cotton (C-rGO-PDA-PPy) fabric is obtained by designing the reduced graphene oxide-polydopamine cotton (C-rGO-PDA) fabric as a conductive network and then depositing the electrochemical active material PPy. The C-rGO-PDA-PPy fabric electrodes show a superior areal specific capacitance (6650 mF/cm2 at 1 mA/cm2) and outstanding cycling stability. The flexible all-solid-state supercapacitors based on cotton fabric have large areal specific capacitance and excellent cycle stability. Meanwhile the energy density of the device can be as high as 140.44 µWh/cm2 when the power density is 0.37 mW/cm2. This work provides an easy, economical and environmentally friendly way to turn fabrics into wearable electronic textile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Qi, H.B. Wang, X.L. You et al., Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity. J. Colloid Interface Sci. 561, 93–103 (2020)

    CAS  Google Scholar 

  2. J. Shi, S. Liu, L. Zhang et al., Smart Textile-Integrated Microelectronic systems for Wearable Applications. Adv. Mater. 32(5), 1901958 (2020)

    CAS  Google Scholar 

  3. L. Huang, S. Lin, Z. Xu et al., Fiber-based Energy Conversion devices for Human-Body Energy Harvesting. Adv. Mater. 32(5), 1902034 (2020)

    CAS  Google Scholar 

  4. E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon. 39(6), 937–950 (2001)

    CAS  Google Scholar 

  5. J. Zhu, Y. Xu, J. Wang et al., Morphology controllable nano-sheet polypyrrole-graphene composites for high-rate supercapacitor. Phys. Chem. Chem. Phys. 17(30), 19885–19894 (2015)

    CAS  Google Scholar 

  6. X. Li, R. Liu, C. Xu et al., High-performance Polypyrrole/Graphene/SnCl2 modified Polyester Textile Electrodes and Yarn electrodes for Wearable Energy Storage. Adv. Funct. Mater. 28(22), 1800064 (2018)

    Google Scholar 

  7. M. Barakzehi, M. Montazer, F. Sharif, T. Norby, A. Chatzitakis, MOF-modified polyester fabric coated with reduced graphene oxide/polypyrrole as electrode for flexible supercapacitors. Electrochim. Acta. 336, 135743 (2020)

    CAS  Google Scholar 

  8. J. Di, X. Zhang, Z. Yong et al., Carbon-Nanotube fibers for Wearable devices and Smart textiles. Adv. Mater. 28(47), 10529–10538 (2016)

    CAS  Google Scholar 

  9. C. Yang, L. Zhang, N. Hu et al., Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density. J. Power Sources. 302(Jan20), 39–45 (2016)

    CAS  Google Scholar 

  10. J. Lv, L. Zhang, Y. Zhong et al., High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage. Org. Electron. 74, 59–68 (2019)

    CAS  Google Scholar 

  11. W. Wang, T. Li, Y.Y. Sun et al., Facile and mild method to fabricate a flexible cellulose-based electrode with reduced graphene and amorphous cobalt-iron-boron alloy for wearable electronics. Cellulose. 27(12), 7079–7092 (2020)

    CAS  Google Scholar 

  12. Y. Huang, H.F. Li, Z.F. Wang et al., Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy. 22, 422–438 (2016)

    CAS  Google Scholar 

  13. Y. Tian, C. Yang, X. Song et al., Engineering the volumetric effect of Polypyrrole for auto-deformable supercapacitor. Chem. Eng. J. 374, 59–67 (2019)

    CAS  Google Scholar 

  14. B. Kirubasankar, V. Murugadoss, J. Lin et al., In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale. 10(43), 20414–20425 (2018)

    CAS  Google Scholar 

  15. V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner, A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 30(8), 1704449.1-1704449.10 (2018)

    Google Scholar 

  16. K. Kong, W. Xue, W. Zhu et al., The fabrication of bowl-shaped polypyrrole/graphene nanostructural electrodes and its application in all-solid-state supercapacitor devices. J. Power Sources 470, 228452.1-228452.8 (2020)

    Google Scholar 

  17. X. Wang, L.J. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8(1), 323–327 (2008)

    CAS  Google Scholar 

  18. S. Pei, J. Zhao, J. Du, W. Ren, H.M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 48(15), 4466–4474 (2010)

    CAS  Google Scholar 

  19. H.J. Shin, K.K. Kim, A. Benayad et al., Efficient reduction of Graphite Oxide by Sodium Borohydride and its Effect on Electrical Conductance. Adv. Funct. Mater. 19(12), 1987–1992 (2009)

    CAS  Google Scholar 

  20. S. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50(9), 3210–3228 (2012)

    CAS  Google Scholar 

  21. H. Weihua, Guangli et al., Polydopamine-functionalization of Graphene Oxide to Enable Dual Signal Amplification for Sensitive Surface Plasmon Resonance Imaging Detection of Biomarker. Anal. Chem. 86(9), 4488–4493 (2014)

    Google Scholar 

  22. Y.L. Liu, K.L. Ai, L.H. Lu, Polydopamine and its derivative materials: synthesis and promising applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 114(9), 5057–5115 (2014)

    CAS  Google Scholar 

  23. J.J. Ma, J.K. Pan, J. Yue, Y. Xu, J.J. Bao, High performance of poly(dopamine)-functionalized graphene oxide/poly(vinyl alcohol) nanocomposites. Appl. Surf. Sci. 427, 428–436 (2018)

    CAS  Google Scholar 

  24. J.C. Lv, P.W. Zhou, L.P. Zhang et al., High-performance textile electrodes for wearable electronics obtained by an improved in situ polymerization method. Chem. Eng. J. 361, 897–907 (2019)

    CAS  Google Scholar 

  25. W. Ye, X. Shi, J. Su et al., One-step reduction and functionalization protocol to synthesize polydopamine wrapping Ag/graphene hybrid for efficient oxidation of hydroquinone to benzoquinone. Appl. Catal. B 160–161, 400–407 (2014)

    Google Scholar 

  26. K. Crowley, J. Cassidy, In situ resonance Raman spectroelectrochemistry of polypyrrole doped with dodecylbenzenesulfonate. J. Electroanal. Chem. 547(1), 75–82 (2003)

    CAS  Google Scholar 

  27. D.D. Zheng, J.F. Zhou, L. Zhong, F.X. Zhang, G.X. Zhang, A novel durable and high-phosphorous-containing flame retardant for cotton fabrics. Cellulose. 23(3), 2211–2220 (2016)

    CAS  Google Scholar 

  28. J. Tian, Y. Xue, M. Wang et al., Dopamine constructing composite of Ni(HCO3)(2)-polydopamine-reduced graphene oxide for high performance electrode in hybrid supercapacitors. Electrochim. Acta. 296, 49–58 (2019)

    CAS  Google Scholar 

  29. N. Sheng, S. Chen, J. Yao, F. Guan, M. Zhang, B. Wang, Z. Wu, P. Ji, H. Wang, Polypyrrole@TEMPO-oxidized bacterial cellulose/reduced graphene oxide macrofibers for flexible all-solid-state supercapacitors. Chem. Eng. J. 368, 1022–1032 (2019)

    CAS  Google Scholar 

  30. D. Zhang, X. Zhang, C. Yao et al., Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J. Power Sources. 196(14), 5990–5996 (2011)

    CAS  Google Scholar 

  31. D.D. Kulkarni, S. Kim, M. Chyasnavichyus et al., Chemical reduction of individual Graphene Oxide sheets as revealed by Electrostatic Force Microscopy. J. Am. Chem. Soc. 136(18), 6546–6549 (2014)

    CAS  Google Scholar 

  32. W. Cui, M. Li, J. Liu, B. Wang, Q. Cheng, A strong Integrated Strength and Toughness Artificial Nacre based on dopamine cross-linked Graphene Oxide. ACS Nano. 8(9), 9511–9517 (2014)

    CAS  Google Scholar 

  33. D. Yang, A. Velamakanni, G. Bozoklu, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-raman spectroscopy. Carbon. 47(1), 145–152 (2009)

    CAS  Google Scholar 

  34. Z. Weng, Y. Su, D.W. Wang et al., Graphene-Cellulose Paper Flexible Supercapacitors. Adv. Energy Mater. 1(5), 917–922 (2011)

    CAS  Google Scholar 

  35. T. Liu, L. Finn, M. Yu et al., Polyaniline and Polypyrrole Pseudocapacitor electrodes with excellent Cycling Stability. Nano Lett. 14(5), 2522–2527 (2014)

    CAS  Google Scholar 

  36. K. Jin, M. Zhou, H. Zhao et al., Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage. Electrochim. Acta. 295, 668–676 (2019)

    CAS  Google Scholar 

  37. S.K. Meher, P. Justin, G.R. Rao, Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl. Mater. Interfaces 3(6), 2063–2073 (2011)

    CAS  Google Scholar 

  38. K. Qi, R.Z. Hou, S. Zaman, B.Y. Xia, H.W. Duan, A core/shell structured tubular graphene nanoflake-coated polypyrrole hybrid for all-solid-state flexible supercapacitors. J. Mater. Chem. A 6(9), 3913–3918 (2018)

    CAS  Google Scholar 

  39. J. Ren, R.-P. Ren, Y.-K. Lv, Stretchable all-solid-state supercapacitors based on highly conductive polypyrrole-coated graphene foam. Chem. Eng. J. 349, 111–118 (2018)

    CAS  Google Scholar 

  40. K. Qi, R. Hou, S. Zaman et al., Construction of metal-organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor. ACS Appl. Mater. Interfaces 10(21), 18021–18028 (2018)

    CAS  Google Scholar 

  41. G. Zhou, N.-R. Kim, S.-E. Chun et al., Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors. Carbon. 130, 137–144 (2018)

    CAS  Google Scholar 

  42. H. Fang, L. Yuan, G. Liang, A. Gu, Aramid fibre-based wearable electrochemical capacitors with high energy density and mechanical properties through chemical synergistic combination of multi-coatings. Electrochim. Acta. 284, 149–158 (2018)

    CAS  Google Scholar 

  43. F.W. Liu, L.Y. Xie, L. Wang et al., Hierarchical porous RGO/PEDOT/PANI Hybrid for Planar/Linear Supercapacitor with Outstanding Flexibility and Stability. Nano-Micro Lett. 12(1), 15 (2020)

    Google Scholar 

  44. A. Agarwal, B.R. Sankapal, Ultrathin Cu2P2O7 nanoflakes on stainless steel substrate for flexible symmetric all-solid-state supercapacitors. Chem. Eng. J. 422, 130131 (2021)

    CAS  Google Scholar 

  45. C.C. Lai, F.H. Hsu, S.Y. Hsu et al., 1.8 V aqueous symmetric Carbon-based supercapacitors with agarose-bound activated carbons in an acidic Electrolyte. Nanomaterials. 11(7), 1731–1741 (2021)

    CAS  Google Scholar 

  46. Y.R. Yang, D. Zhang, Y.H. Liu et al., Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible Supercapacitors. ACS Appl. Mater. Interfaces. 13(29), 34168–34177 (2021)

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (No. 2232020G-04) and the National Natural Science Foundation of China (No. 21872025).

Author information

Authors and Affiliations

Authors

Contributions

YM: Methodology, Validation, Investigation, Writing—Original Draft. DM: Conceptualization, Methodology, Writing—Original Draft. PZ: Visualization, Methodology. LZ: Supervision. YZ: Software. XS: Writing—Review & Editing. HX: Supervision, Writing—Review & Editing. ZM: Resources, Project administration.

Corresponding authors

Correspondence to Hong Xu or Zhiping Mao.

Ethics declarations

Competing interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 566.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Mu, D., Zhou, P. et al. Cotton fabric electrodes coated by polydopamine-reduced graphene oxide and polypyrrole for flexible supercapacitors. J Mater Sci: Mater Electron 35, 52 (2024). https://doi.org/10.1007/s10854-023-11783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11783-y

Navigation