Skip to main content
Log in

Improved broadband electromagnetic interference shielding and strain sensing properties of multifunctional reduced graphene oxide/iron–cobalt ferrite composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein we report, an enhanced dielectric and electromagnetic shielding interference (EMI) shielding properties of reduced graphene oxide (rGO) doped with iron–cobalt (Fe–Co–O4) ferrite composites in broadband microwave frequencies (GHz) as well as strain sensors. The surface morphology, particle size, structures, and optical absorption properties were characterized different analytical techniques, such as scanning electron microscopy (SEM), X-ray diffraction, and UV–Visible spectroscopy methods. The synthesized ferrite nanoparticles (NPs) were used to study the dielectric, magnetic, EMI shielding in broadband frequencies, and strain sensing applications. The doping of rGO into Fe–Co–O4 lead to the formation of superior conducting grains and enhances the dielectric, magnetic, and EMI shielding properties of the ferrite composites. Amongst different samples prepared, rGO-doped Fe–Co–O4 ferrites with thickness 0.5 mm exhibit superior absorption-dominated EM shielding features with shielding efficiency of − 24.16 dB (which is equal to 99.50% of absorption) in the broadband microwave frequency regime. Furthermore, the prepared rGO-doped Fe–Co–O4 ferrite composite shows the excellent long-term stability in terms of EMI shielding efficiency under the variable mechanical strains. In addition to the good level of the shielding efficiency, this rGO-doped Fe–Co–O4 composite relays superior mechanical strain sensing response. Due to excellent properties, such as light weight, mechanically robust, enhanced EMI-SE, and excellent level of strain sensing behaviour, these ferrites-based composites could be employed as a covering layer in next-generation folding and wearable electronic gadgets for potential broadband shielding and mechanical strain sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. V. Kumar, S.K. Dhawan, P. Gairola, S.P. Gairola, K. Singh, Barium ferrite and graphite integrated with polyaniline as effective shield against electromagnetic interference. Synth. Met. 221, 326–331 (2016)

    Google Scholar 

  2. A. Saboor, A.N. Khan, H.M. Cheema, K. Yaqoob, A. Shafqat, Effect of polyaniline on the dielectric and EMI shielding behaviors of styrene acrylonitrile. J. Mater. Sci. Mater. Electron. 27, 9634–9641 (2016)

    CAS  Google Scholar 

  3. X.G. Liu, B. Li, D.Y. Geng, W.B. Cui, F. Yang, Z.G. Xie, D.J. Kang, Z.D. Zhang, Fe, Ni/C nano capsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon 47, 470–474 (2009)

    CAS  Google Scholar 

  4. K. Lakshmi, H. John, K.T. Mathew, R. Joseph, K.E. George, Microwave absorption, reflection and EMI shielding of PU-PANI composite. Acta Mater. 57, 371–375 (2009)

    CAS  Google Scholar 

  5. F. Wang, X. Wang, J. Zhu, H. Yang, X. Kong, X. Liu, Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties. Sci. Rep. 6, 1–8 (2016)

    Google Scholar 

  6. P. Velusamy, X. Liu, M. Sathiya, N.S. Alsaiari, F.M. Alzahrani, E. Elamurugu, M.S. Pandian, Investigate the suitability of g-C3N4 nanosheets ornamented with BiOI nanoflowers for photocatalytic dye degradation and PEC water splitting. Chemosphere 321, 138007 (2023)

    CAS  Google Scholar 

  7. S. Gunasekaran, K. Thanrasu, A. Manikandan, M. Durka, A. Dinesh, S. Anand, S. Shankar, Y. Slimani, M.A. Almessiere, A. Baykal, Structural, fabrication and enhanced electromagnetic wave absorption properties of reduced graphene oxide (RGO)/zirconium substituted cobalt ferrite (Co0·5Zr0·5Fe2O4) nanocomposites. Phys. B Condens. Matter. 605, 412784 (2021)

    CAS  Google Scholar 

  8. N.N. Ali, Y. Atassi, A. Salloum, A. Charba, A. Malki, M. Jafarian, Comparative study of microwave absorption characteristics of polyaniline/NiZn ferrite nanocomposites with different ferrite percentages. Mater. Chem. Phys. 211, 79–87 (2018)

    CAS  Google Scholar 

  9. S. Khasim, Polyaniline-graphene nanoplatelet composite films with improved conductivity for high-performance X-band microwave shielding applications. Results Phys. 12, 1073–1081 (2019)

    Google Scholar 

  10. R. Rosnan, Z. Othaman, R. Hussin, A.A. Ati, A. Samavati, S. Dabagh, S. Zare, Effects of Mg substitution on the structural and magnetic properties of Co0.5Ni0.5−xMgxFe2Onanoparticle ferrites. Chin. Phys. B. 25, 047501 (2016)

    Google Scholar 

  11. P. Velusamy, S. Liu, R. Xing, M. Sathiya, A. Ahmad, Munirah D. Albaqami, R.G. Alotabi, E. Elamurugu, M. Senthil Pandian, P. Ramasamy, Enhanced photo-electrocatalytic performance of the nano heterostructures based on Pr3+ modified g-C3N4 and BiOI. Int. J. Hydrog. Energy 47, 32903–32920 (2022)

    CAS  Google Scholar 

  12. H. Moradmard, S.F. Shayesteh, P. Tohidi, Z. Abbas, M. Khaleghi, Structural, magnetic and dielectric properties of magnesium doped nickel ferrite nanoparticles. J. Alloy. Compd. 650, 116–122 (2015)

    CAS  Google Scholar 

  13. A. Shan, X. Wu, J. Lu, C. Chen, R. Wang, Phase formations and magnetic properties of single crystal nickel ferrite (NiFe2O4) with different morphologies. Cryst Eng Comm 17, 1603–1608 (2015)

    CAS  Google Scholar 

  14. M.F. Shakir, A. Tariq, Z.A. Rehan, Effect of Nickel-spinal-Ferrites on EMI shielding properties of polystyrene/polyaniline blend. SN Appl. Sci. 2, 706 (2020)

    CAS  Google Scholar 

  15. I. Ali, M.U. Islam, M.N. Ashiq, M.A. Iqbal, N. Karamat, M.A. Khan, I. Sadiq, S. Ijaz, I. Shakir, Synthesis and characterization of hexagonal ferrite Sr1.8Sm0.2Co2Ni1.50Fe10.50O22/PST thin films for high frequency applications. J. Magn. Magn. Mater. 393(1), 352–356 (2015)

    CAS  Google Scholar 

  16. T.T.T. Carol, J. Mohammed, D. Basandrai, S.K. Godara, G.R. Bhadu, S. Mishra, N. Aggarwal, S.B. Narang, A.K. Srivastava, X-band shielding of electromagnetic interference (EMI) by Co2Y barium hexaferrite, bismuth copper titanate (BCTO), and polyaniline (PANI) composite. J. Magn. Magn. Mater. 501, 166433 (2020)

    Google Scholar 

  17. A. Pasha, A.F.A. El-Rehim, A.M. Ali, K.M. Srinivasamurthy, S.O. Manjunatha, S. Wang, High performance EMI shielding applications of Co0.5Ni0.5CexSmyFe2-x-yO4 nanocomposite thin films. Ceram. Int. 49, 2224–2235 (2023)

    CAS  Google Scholar 

  18. S. Dabas, M. Chahar, O.P. Thakur, Electromagnetic interference shielding properties of CoFe2O4/polyaniline/poly (vinylidene fluoride) nanocomposites. Mater. Chem. Phys. 278, 125579 (2022)

    CAS  Google Scholar 

  19. P. Xie, R. Fan, Z. Zhang, Tunable negative permittivity and permeability of yttrium iron garnet/polyaniline composites in radio frequency region. J. Mater. Sci. Mater. Electron. 29, 6119–6124 (2018)

    CAS  Google Scholar 

  20. R.S. Anju yadav, P. Pötschke, J. Pionteck, B. Krause, I. Kuřitka, J. Vilčáková, D. Škoda, P. Urbánek, M. Machovský, M. Masař, M. Urbánek, CuxCo1-xFe2O4 (x = 0.33, 0.67, 1) spinel ferrite nanoparticles based thermoplastic polyurethane nanocomposites with reduced graphene oxide for highly efficient electromagnetic interference shielding. Int J Mol Sci. 26, 2610 (2022)

    Google Scholar 

  21. X. Li, R. Shu, Y. Wu, J. Zhang, Z. Wan, Fabrication of Nitrogen-Doped Reduced Graphene Oxide/Cobalt Ferrite Hybrid Nanocomposites as Broadband Electromagnetic Wave Absorbers in Both X and Ku Bands. Synth. Met. 271, 116621 (2021)

    CAS  Google Scholar 

  22. A. Pasha, S. Khasim, A.A.A. Darwish, T.A. Hamdalla, S.A. Al-Ghamdi, S. Alfadhli, Flexible, stretchable and electrically conductive PDMS decorated with polypyrrole/manganese-iron oxide nanocomposite as a multifunctional material for high performance EMI shielding applications. Synth. Met. 283, 116984 (2022)

    CAS  Google Scholar 

  23. K.M. Srinivasamurthy, K. Manjunatha, A. El-Denglawey, R. Rajaramakrishna, S.P. Kubrin, A. Pasha, V.J. Angadi, Evaluation of structural, dielectric and LPG gas sensing behavior of porous Ce3+–Sm3+ doped Cobalt nickel ferrite. Mater. Chem. Phys. 275, 125222 (2022)

    CAS  Google Scholar 

  24. P. Rao, R.V. Godbole, D.M. Phase, R.C. Chikate, S. Bhagwat, Ferrite thin films: synthesis, characterization and gas sensing properties towards LPG. Mater. Chem. Phys. 149, 333–338 (2015)

    Google Scholar 

  25. V. Periyasamhy, R.R. Babu, A. Ahmad, R.G.A. Alotabi, M.D. Albaqami, E. Elamurugu, Spray-deposited rare earth metal ion (Sm3+, Ce3+, Pr3+, La3+)-doped CdO thin films for enhanced formaldehyde gas sensing characteristics. ACS Omega 7(39), 35191–35203 (2022)

    Google Scholar 

  26. M. Stygar, W. Tejchman, J. Dąbrowa, Synthesis processing and properties of calcium- and nickel-doped yttrium chromates (III) Y0.8Ca0.2Cr1−xNixO3 (x = 0–0.3) and studies on their potential application as coatings for SOFC interconnects. J. Mater. Eng. Perform. 27, 3276–3289 (2018)

    CAS  Google Scholar 

  27. S. Thakur, B. Raina, K.K. Bamzai, Investigations on structural, spectroscopic and magnetic properties of yttrium barium orthoferrite and nickel doped strontium hexaferrite composites. Appl. Phys. A 128, 263 (2022)

    CAS  Google Scholar 

  28. J. Chen, Z. Wang, Z. Cheng, Investigation on the structural, magnetic, and dielectric properties of Ni2+–Zr4+ co-doped Y-type hexaferrite Ba2Ni2Fe12O22. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08568-0

    Article  Google Scholar 

  29. N. Jahan, M.N.I. Khan, M.R. Hasan, M.S. Bashar, A. Islam, M.K. Alam, M.A. Hakim, J.I. Khandaker, Correlation among the structural, electric and magnetic properties of Al3+ substituted Ni–Zn–Co ferrites. RSC Adv. 12, 15167–15179 (2022)

    CAS  Google Scholar 

  30. N. Ambikeswari, S. Manivannan, Structural, Magnetic, and Dielectric Properties of Ultrafine Nickel-Substituted Cobalt Ferrite-Reduced Graphene Oxide Nanocomposites. J. Electron. Mater. 50, 6135–6148 (2021)

    CAS  Google Scholar 

  31. M. Saini, R. Shukla, S.K. Singh, Nickel doped cobalt ferrite/poly (Ani-co-Py) multiphase nanocomposite for EMI shielding application. J. Inorg. Organomet. Polym. 29, 2044–2053 (2019)

    CAS  Google Scholar 

  32. K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.S. Kong, J.S. Chung, Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5, 2411–2420 (2013)

    CAS  Google Scholar 

  33. M.D. Ali, A. Aslam, T. Zeeshan, R. Mubaraka, S.A. Bukhari, M. Shoaib, M. Amami, I. Farhat, S. Ahmed, J. Abdelhak, S. Waseem, Robust effectiveness behaviour of synthesized cobalt doped prussian blue graphene oxide ferrite against EMI shielding.  Inorg. Chem. Commun.  137, 109204 (2022)

    CAS  Google Scholar 

  34. R. Kumar, W.C. Macedo, R.K. Singh, Nitrogen-Sulfur Co-Doped Reduced Graphene Oxide-Nickel Oxide Nanoparticle Composites for Electromagnetic Interference Shielding. ACS Appl. Nano Mater. 2, 4626–4636 (2019)

    CAS  Google Scholar 

  35. H. Zhao, L. Hou, S. Bi, Y. Lu, Enhanced X-band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt–nickel coatings. ACS Appl. Mater. Interfaces 9(38), 33059–33070 (2017)

    CAS  Google Scholar 

  36. S. Kumar, V. Verma, R. Walia, Magnetization and thickness dependent microwave attenuation behaviour of Ferrite-PANI composites and embedded composite-fabrics prepared by in situ polymerization. AIP Adv. 11, 015106 (2021)

    CAS  Google Scholar 

  37. P. Song, Z. Ma, H. Qiu, High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures. Nano-Micro Lett. 14, 51 (2022)

    CAS  Google Scholar 

  38. B. Xue, Y. Li, Z. Cheng, Directional Electromagnetic Interference Shielding Based on Step-Wise Asymmetric Conductive Networks. Nano-Micro Lett. 14, 16 (2022)

    CAS  Google Scholar 

  39. B. Du, M. Cai, X. Wang, Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. J. Adv. Ceram. 10, 832–842 (2021)

    CAS  Google Scholar 

  40. N. Gulzar, K. Zubair, M.F. Shakir, Effect on the EMI Shielding Properties of Cobalt Ferrites and Coal-Fly-Ash Based Polymer Nanocomposites. J. Supercond. Nov. Magn. 33, 3519–3524 (2020)

    CAS  Google Scholar 

  41. S. Joshi, V.B. Kamble, M. Kumar, A.M. Umarji, G. Srivastava, Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. J. Alloys Compd. 654, 460–466 (2016)

    CAS  Google Scholar 

  42. J. Chang, H. Zhai, Hu. Zhirun, J. Li, Ultra-thin metal composites for electromagnetic interference shielding. Compos. B Eng. 246, 110269 (2022)

    Google Scholar 

  43. V. Lalan, A.P. Narayanan, K.P. Surendran, S. Ganesanpotti, Room-temperature ferromagnetic Sr3YCo4O10+δ and carbon black-reinforced polyvinylidene fluoride composites toward high-performance electromagnetic interference shielding. ACS Omega 4(5), 8196–8206 (2019)

    CAS  Google Scholar 

  44. R. Manna, S.K. Srivastava, Reduced graphene oxide/Fe3O4/polyaniline ternary composites as a superior microwave absorber in the shielding of electromagnetic pollution. ACS Omega 6, 9164–9175 (2021)

    CAS  Google Scholar 

  45. P. Velusamy, M. Sathiya, Y. Liu, S. Liu, R. RameshBabu, M.A.S. Aly, E. Elangovan, H. Chang, L. Mao, R. Xing, Investigating the effect of Nd3+ dopant and the formation of g-C3N4/BiOI heterostructure on the microstructural, optical and photoelectrocatalytic properties of g-C3N4. Appl. Surf. Sci. 561(30), 150082 (2021)

    CAS  Google Scholar 

  46. I.A. Rashid, M.S. Irfan, Y.Q. Gill, R. Nazar, F. Saeed, A. Afzal, H. Ehsan, A.A. Qaiser, A. Shakoor, Stretchable strain sensors based on polyaniline/thermoplastic polyurethane blends. Polym. Bull. 77, 1081–1093 (2019)

    Google Scholar 

  47. M.K. Tehrani, A. Ghasemi, M. Moradi, R.S. Alam, Wideband electromagnetic wave absorber using doped barium hexaferrite in Ku-band. J. Alloys Compd. 509, 8398–8400 (2011)

    CAS  Google Scholar 

Download references

Funding

No funding for this research work.

Author information

Authors and Affiliations

Authors

Contributions

BNR: contributed to methodology, validation, investigation, and writing the original draft of the manuscript. AP: contributed to supervision, conceptualization, and writing, reviewing, and editing of the manuscript. SK: contributed to analysis of characterization data, analysis of emi shielding, and editing of the final manuscript.

Corresponding authors

Correspondence to B. N. Ramakrishna or Apsar Pasha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramakrishna, B.N., Pasha, A. & Khasim, S. Improved broadband electromagnetic interference shielding and strain sensing properties of multifunctional reduced graphene oxide/iron–cobalt ferrite composites. J Mater Sci: Mater Electron 35, 48 (2024). https://doi.org/10.1007/s10854-023-11781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11781-0

Navigation