Skip to main content
Log in

Dielectric and magnetic response of BiFeO3 in the presence of ionic filler at room temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Composite systems consisting of ionic sodium chloride (NaCl) as a filler with varying weight percentages (x = 0%, 10%, 30%, and 50%) embedded into the matrix of multiferroic bismuth ferrite (BiFeO3) were synthesized. Post-annealed at 750 °C, the XRD analysis reveals that the presence of NaCl leads to the formation of secondary phases. The particle grain size varies in the range of 0.5–1.5 μm as found from FESEM. The VSM study shows the coercive field (Hc) enhancement with maximum Hc = 79.18 Oe is found for the composite system x = 10%. The electrical impedance study reveals that at a low-frequency regime, the real component of dielectric permittivity has relatively increased for the composite systems compared to as-prepared bismuth ferrite (BFO). The dielectric loss increases at low frequency but remains comparable at the high-frequency limit, indicating a possible role in the energy storage application. Exponent (n) for frequency-dependent electrical conductivity is found to be large (n > 1) which is due to various degrees of the proximity of adjacent NaCl grains distributed in a multiferroic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting the findings of the study are included in the article. Raw data that support the obtained findings are available from the corresponding author upon reasonable request.

References

  1. H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162(1), 317–338 (2011). https://doi.org/10.1080/00150199408245120

    Article  Google Scholar 

  2. D. Staedler et al., Cellular uptake and biocompatibility of bismuth ferrite harmonic advanced nanoparticles. Nanomedicine 11(4), 815–824 (2015). https://doi.org/10.1016/j.nano.2014.12.018

    Article  CAS  Google Scholar 

  3. S. Ulag et al., “Fabrication of three-dimensional PCL/BiFeO3 scaffolds for biomedical applications. Mater Sci Eng B Solid State Mater Adv Technol (2020). https://doi.org/10.1016/j.mseb.2020.114660

    Article  Google Scholar 

  4. V.A. Surdu et al., Bi1−xeuxfeo3 powders: Synthesis, characterization, magnetic and photoluminescence properties. Nanomaterials (2019). https://doi.org/10.3390/nano9101465

    Article  Google Scholar 

  5. N. A. Spaldin and R. Ramesh, Advances in magnetoelectric multiferroics. Nature Materials, Nature Publishing Group, 18(3), 203–212 (2019). doi https://doi.org/10.1038/s41563-018-0275-2

  6. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009). https://doi.org/10.1002/ADMA.200802849

    Article  CAS  Google Scholar 

  7. K.P. Remya, D. Prabhu, R.J. Joseyphus, A.C. Bose, C. Viswanathan, N. Ponpandian, Tailoring the morphology and size of perovskite BiFeO3 nanostructures for enhanced magnetic and electrical properties. Mater. Des. (2020). https://doi.org/10.1016/j.matdes.2020.108694

    Article  Google Scholar 

  8. T. Hussain, S.A. Siddiqi, S. Atiq, M.S. Awan, Induced modifications in the properties of Sr doped BiFeO3 multiferroics. Prog. Nat. Sci: Mater Int 23(5), 487–492 (2013). https://doi.org/10.1016/j.pnsc.2013.09.004

    Article  Google Scholar 

  9. B. Dhanalakshmi, P. Kollu, B. Parvatheeswara Rao, P.S.V.S. Rao, Impedance spectroscopy and dielectric properties of multiferroic BiFeO3/Bi0.95Mn0.05FeO3-Ni0.5Zn0.5Fe2O4 composites. Ceram. Int. 42(2), 2186–2197 (2016). https://doi.org/10.1016/J.CERAMINT.2015.10.005

    Article  CAS  Google Scholar 

  10. U. Khan et al., Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles. J. Nanopart. Res. 17(11), 1–9 (2015). https://doi.org/10.1007/S11051-015-3233-9

    Article  Google Scholar 

  11. C. Song et al., Magnetic and ferroelectric properties of Indium-doped gallium ferrite. J. Magn. Magn. Mater. 469, 8–12 (2019). https://doi.org/10.1016/J.JMMM.2018.08.032

    Article  CAS  Google Scholar 

  12. S. Arti, P. Kumar, R. Walia. Kumar, V. Verma, Improved ferroelectric, magnetic and photovoltaic properties of Pr doped multiferroic bismuth ferrites for photovoltaic application. Results Phys. 14, 102403 (2019). https://doi.org/10.1016/J.RINP.2019.102403

    Article  Google Scholar 

  13. W.A. Wani, S. Kundu, K. Ramaswamy, H. Venkataraman, Structural, morphological, optical and dielectric investigations in cobalt doped bismuth ferrite nanoceramics prepared using the sol-gel citrate precursor method. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156334

    Article  Google Scholar 

  14. D. Bhadra, M.G. Masud, S. Sarkar, J. Sannigrahi, S.K. De, B.K. Chaudhuri, Synthesis of PVDF/BiFeO 3 nanocomposite and observation of enhanced electrical conductivity and low-loss dielectric permittivity at percolation threshold. J. Polym. Sci. B Polym. Phys. 50(8), 572–579 (2012). https://doi.org/10.1002/polb.23041

    Article  CAS  Google Scholar 

  15. H.H. Singh, H.B. Sharma, Impedance spectroscopy and transport properties of polymer-based flexible nanocomposites. Solid State Commun. 319, 114012 (2020). https://doi.org/10.1016/J.SSC.2020.114012

    Article  CAS  Google Scholar 

  16. W.C. Zheng, D.X. Zheng, Y.C. Wang, D. Li, C. Jin, H.L. Bai, Flexible Fe 3 O 4 /BiFeO 3 multiferroic heterostructures with uniaxial strain control of exchange bias. J. Magn. Magn. Mater. 481, 227–233 (2019). https://doi.org/10.1016/j.jmmm.2019.02.068

    Article  CAS  Google Scholar 

  17. V. Kumar, S. Singh, Optical and magnetic properties of (1–x)BiFeO3-xCaTiO3 nanoparticles. J. Alloys Compd. 732, 350–357 (2018). https://doi.org/10.1016/J.JALLCOM.2017.10.236

    Article  CAS  Google Scholar 

  18. Q. Zhang et al., An etching and re-growth method for the synthesis of bismuth ferrite/MIL-53(Fe) nanocomposite as efficient photocatalyst for selective oxidation of aromatic alcohols. Appl. Catal. B (2020). https://doi.org/10.1016/j.apcatb.2019.118529

    Article  Google Scholar 

  19. H. Taniguchi, D. Sato, A. Nakano, I. Terasaki, Permittivity boosting in ‘yellow’ (Nb + In) co-doped TiO2. J. Mater. Chem. C Mater. 8(39), 13627–13631 (2020). https://doi.org/10.1039/d0tc03539d

    Article  CAS  Google Scholar 

  20. M. Kawarasaki, K. Tanabe, I. Terasaki, Y. Fujii, H. Taniguchi, Intrinsic enhancement of dielectric permittivity in (Nb + In) co-doped TiO2 single crystals. Sci. Rep. 7(1), 1–6 (2017). https://doi.org/10.1038/s41598-017-05651-z

    Article  CAS  Google Scholar 

  21. C. Li et al., Emerging alkali metal ion (Li+, Na+, K+ and Rb+) doped perovskite films for efficient solar cells: recent advances and prospects. J. Mater. Chem. A Mater. 7(42), 24150–24163 (2019). https://doi.org/10.1039/C9TA08130E

    Article  CAS  Google Scholar 

  22. J. Jiang et al., The doping of alkali metal for halide perovskites. ES Mater. Manuf. (2019). https://doi.org/10.30919/ESMM5F705

    Article  Google Scholar 

  23. Z. Tang et al., Modulations of various alkali metal cations on organometal halide perovskites and their influence on photovoltaic performance. Nano Energy 45, 184–192 (2018). https://doi.org/10.1016/J.NANOEN.2017.12.047

    Article  CAS  Google Scholar 

  24. S. Kour, R. Mukherjee, Effect of TiO2as Filler in NaCl: possible applications in ionic storage systems. J. Phys.: Conf. Ser. Ins. Phys. (2022). https://doi.org/10.1088/1742-6596/2267/1/012092

    Article  Google Scholar 

  25. S.A. Mhamad, F. Aziz, M. Aziz, S. Chandren, A.A. Ali, Rapid synthesis of pure phase bismuth ferrite through modified sol-gel auto-ignition method: impact of different chelating agents. ChemistrySelect 5(43), 13584–13590 (2020). https://doi.org/10.1002/SLCT.202002827

    Article  CAS  Google Scholar 

  26. S.K. Srivastav, N.S. Gajbhiye, Low temperature synthesis, structural, optical and magnetic properties of bismuth ferrite nanoparticles. J. Am. Ceram. Soc. 95(11), 3678–3682 (2012). https://doi.org/10.1111/J.1551-2916.2012.05411.X

    Article  CAS  Google Scholar 

  27. M.V. Shisode, D.N. Bhoyar, P.P. Khirade, K.M. Jadhav, Structural, microstructural, magnetic, and ferroelectric properties of Ba2 +-doped BiFeO3 nanocrystalline multifferroic material. J. Supercond. Nov. Magn. 31(8), 2501–2509 (2018). https://doi.org/10.1007/s10948-017-4515-5

    Article  CAS  Google Scholar 

  28. R. Verma et al., Effect of calcination temperature on structural and morphological properties of bismuth ferrite nanoparticles. Ceram. Int. 47(3), 3680–3691 (2021). https://doi.org/10.1016/j.ceramint.2020.09.220

    Article  CAS  Google Scholar 

  29. A. Mijiti, M. Mamat, F. Xiaerding, Q. Wang, A. Abudurexiti, L. Aihaiti, Electron-beam evaporated bismuth ferrite (BiFeO3) thin films and characterization. Mater. Res. Express (2021). https://doi.org/10.1088/2053-1591/abeaba

    Article  Google Scholar 

  30. M. Sakar, S. Balakumar, P. Saravanan, S.N. Jaisankar, Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method. Mater. Res. Bull. 48(8), 2878–2885 (2013). https://doi.org/10.1016/j.materresbull.2013.04.008

    Article  CAS  Google Scholar 

  31. J. Article Author et al., ETH Library Multiferroic bismuth ferrite: Perturbed angular correlation studies on its ferroic α-β phase transition Rights/license: creative commons attribution 4.0 international multiferroic bismuth ferrite: perturbed angular correlation studies on its ferroic α-β phase transition. Phys. Rev. B 102, 224110 (2020). https://doi.org/10.3929/ethz-b-000463075

    Article  Google Scholar 

  32. A. Manzoor, S.K. Hasanain, A. Mumtaz, M.F. Bertino, L. Franzel, Effects of size and oxygen annealing on the multiferroic behavior of bismuth ferrite nanoparticles. J. Nanopart. Res. 14(12), 1–10 (2012). https://doi.org/10.1007/S11051-012-1310-X

    Article  Google Scholar 

  33. J.T. Han et al., Tunable synthesis of bismuth ferrites with various morphologies. Adv. Mater. 18(16), 2145–2148 (2006). https://doi.org/10.1002/adma.200600072

    Article  CAS  Google Scholar 

  34. T. Liu, Y. Xu, C. Zeng, Synthesis of Bi2Fe4O9 via PVA sol-gel route. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 176(7), 535–539 (2011). https://doi.org/10.1016/j.mseb.2011.01.009

    Article  CAS  Google Scholar 

  35. T.J. Park, G.C. Papaefthymiou, A.R. Moodenbaugh, Y. Mao, S.S. Wong, Synthesis and characterization of submicron single-crystalline Bi 2Fe4O9 cubes. J. Mater. Chem. 15(21), 2099–2105 (2005). https://doi.org/10.1039/b501552a

    Article  CAS  Google Scholar 

  36. S. Sharma, R.K. Dwivedi, J.M. Siqueiros, O. Raymond Herrera, Coexistence of two ferroelectric phases and improved room-temperature multiferroic properties in the (0.70)BiFe1—XCoxO3-(0.30)PbTiO3system. J. Appl. Phys. (2020). https://doi.org/10.1063/5.0019764

    Article  Google Scholar 

  37. Z. Li, J. Dai, C. Cheng, W. Feng, Q. Wang, Tailoring photocatalytic activity and magnetic properties of BiFeO3/CeO2/Bi2Fe4O9 composites. J. Phys. Chem. Solids (2021). https://doi.org/10.1016/J.JPCS.2021.110171

    Article  Google Scholar 

  38. P. Suresh, B.K. Hazra, B.R. Kumar, T. Chakraborty, P.D. Babu, S. Srinath, Lattice effects on the multiferroic characteristics of (La, Ho) co-substituted BiFeO3. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.158719

    Article  Google Scholar 

  39. G. Singh et al., Magneto-dielectric and multiferroic properties in Bi0.95Yb0.05Fe0.95Co0.05O3. Phys. Scr. (2019). https://doi.org/10.1088/1402-4896/ab03a5

    Article  Google Scholar 

  40. Ashima, S. Sanghi, A. Agarwal, Reetu, N. Ahlawat, N. Monica, Structure refinement and dielectric relaxation of M-type Ba, Sr, Ba-Sr, and Ba-Pb hexaferrites. J. Appl. Phys. 112(1), 014110 (2012). https://doi.org/10.1063/1.4734002

    Article  CAS  Google Scholar 

  41. P. Sharma, A. Kumar, T. Jingyou, G. Tan, Structural, electrical, and magnetic properties of mullite-type Bi2Fe4O9 ceramic. J. Electroceram. 45(4), 148–155 (2020). https://doi.org/10.1007/s10832-021-00233-y

    Article  CAS  Google Scholar 

  42. M.M. Rhaman et al., Enhanced electrical conductivity and multiferroic property of cobalt-doped bismuth ferrite nanoparticles. J. Mater. Sci.: Mater. Electron. 31(11), 8727–8736 (2020). https://doi.org/10.1007/S10854-020-03407-6/TABLES/4

    Article  CAS  Google Scholar 

  43. D. Mishra, B.P. Mandal, R. Mukherjee, R. Naik, G. Lawes, B. Nadgorny, Oxygen vacancy enhanced room temperature ferromagnetism in Al-doped MgO nanoparticles. Appl. Phys. Lett. 102, 182404 (2013). https://doi.org/10.1063/1.4804425

    Article  CAS  Google Scholar 

  44. G. Wang, S. Nie, J. Sun, S. Wang, Q. Deng, Effects of Zr4+ doping on structure, magnetic and optical properties of Bi2Fe4O9 powders. J. Mater. Sci.: Mater. Electron. 27(9), 9417–9422 (2016). https://doi.org/10.1007/s10854-016-4987-2

    Article  CAS  Google Scholar 

  45. N. Wang et al., Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Letters, 12(1). Springer, (2020). doi: https://doi.org/10.1007/s40820-020-00420-6.

  46. R. Mahbub et al., Structural, dielectric, and magnetic properties of Ba-doped multiferroic bismuth ferrite. Acta Metall. Sin. (Engl. Lett.) 28(8), 958–964 (2015). https://doi.org/10.1007/S40195-015-0279-8

    Article  CAS  Google Scholar 

  47. R. Das, T. Sarkar, K. Mandal, Multiferroic properties of Ba2+ and Gd3+ co-doped bismuth ferrite: magnetic, ferroelectric and impedance spectroscopic analysis. J. Phys. D Appl. Phys. 45(45), 455002 (2012). https://doi.org/10.1088/0022-3727/45/45/455002

    Article  CAS  Google Scholar 

  48. B. Neher et al., Study of the electric properties of palm fiber-reinforced acrylonitrile butadiene styrene composites. J. Reinf. Plast. Compos. 34(15), 1253–1260 (2015). https://doi.org/10.1177/0731684415591067

    Article  CAS  Google Scholar 

  49. L.F. Lima, A.L. Vieira, H. Mukai, C.M.G. Andrade, P.R.G. Fernandes, Electric impedance of aqueous KCl and NaCl solutions: Salt concentration dependence on components of the equivalent electric circuit. J. Mol. Liq. 241, 530–539 (2017). https://doi.org/10.1016/j.molliq.2017.06.069

    Article  CAS  Google Scholar 

  50. J.N. Wilson, J.M. Frost, S.K. Wallace, A. Walsh, Dielectric and ferroic properties of metal halide perovskites. APL Mater. (2019). https://doi.org/10.1063/1.5079633

    Article  Google Scholar 

  51. R. Mukherjee, G. Lawes, B. Nadgorny, Enhancement of high dielectric permittivity in CaCu3Ti 4O12/RuO2 composites in the vicinity of the percolation threshold. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4893009

    Article  Google Scholar 

  52. B. Khan et al., Structural, dielectric, magnetic and magneto-dielectric properties of (1–x)BiFeO3–(x)CaTiO3 composites. J. Mater. Sci.: Mater. Electron. 32(13), 18012–18027 (2021). https://doi.org/10.1007/s10854-021-06344-0

    Article  CAS  Google Scholar 

  53. A. Arya. Pritam, A.L. Sharma, Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium-ion rechargeable batteries. J. Mater. Sci. 54(9), 7131–7155 (2019). https://doi.org/10.1007/s10853-019-03381-3

    Article  CAS  Google Scholar 

  54. H.J. Woo, S.R. Majid, A.K. Arof, Dielectric properties and morphology of polymer electrolyte based on poly(ε-caprolactone) and ammonium thiocyanate. Mater. Chem. Phys. 134(2–3), 755–761 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.064

    Article  CAS  Google Scholar 

  55. A. Dhahri, E. Dhahri, E.K. Hlil, Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 8(17), 9103–9111 (2018). https://doi.org/10.1039/c8ra00037a

    Article  CAS  Google Scholar 

  56. I.G. Austin, N.F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 18(71), 41–102 (1969). https://doi.org/10.1080/00018736900101267

    Article  CAS  Google Scholar 

  57. S. Moharana, M.K. Mishra, M. Chopkar, R.N. Mahaling, Enhanced dielectric properties of surface hydroxylated bismuth ferrite–Poly (vinylidene fluoride-co-hexafluoropropylene) composites for energy storage devices. J. Sci.: Adv. Mater. Dev. 1(4), 461–467 (2016). https://doi.org/10.1016/j.jsamd.2016.08.008

    Article  Google Scholar 

  58. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22(2), 111–195 (1993)

    Article  CAS  Google Scholar 

  59. C. Tsonos, Comments on frequency dependent AC conductivity in polymeric materials at low frequency regime. Curr. Appl. Phys. 19(4), 491–497 (2019). https://doi.org/10.1016/j.cap.2019.02.001

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Central Instrumentation Facility of Lovely Professional University Phagwara, 144411, Punjab, India for providing the XRD, FE-SEM, and Impedance Analyser facility. The VSM facility is provided by Guru Nanak Dev University, Amritsar, Punjab 143005, India.

Author information

Authors and Affiliations

Authors

Contributions

RS performed the experimental work including data collection. Writing of the final draft was performed by RS. RS, PSM and RM, contributed to the analysis of the data. Proofreading and design of the paper were implemented by Dr. RM, the corresponding author, who has supervised and finalized the study in this paper. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to Rupam Mukherjee.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest regarding this work. We also stated that we do not have any commercial or associative interest representing a conflict of interest with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Maji, P.S. & Mukherjee, R. Dielectric and magnetic response of BiFeO3 in the presence of ionic filler at room temperature. J Mater Sci: Mater Electron 35, 71 (2024). https://doi.org/10.1007/s10854-023-11773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11773-0

Navigation